A Decision Procedure for Reflexive Regular Splicing Languages

  • Paola Bonizzoni
  • Giancarlo Mauri
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4036)

Abstract

A structural characterization of reflexive splicing languages has been recently given in [1] and [5] showing surprising connections between long standing notions in formal language theory, the syntactic monoid and Schützenberger constant and the splicing operation.

In this paper, we provide a procedure to decide whether a regular language is a reflexive splicing language, based on the above mentioned characterization that is given in terms of a finite set of constants for the language. The procedure relies on a basic result showing how to determine, given a regular language L, a finite set of representatives for constant classes of the syntactic monoid of L. This finite set provides the splice sites of splicing rules generating language L. Indeed, we recall that in [1] it is shown that a regular splicing language is reflexive iff splice sites of the rules are constants for the language.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bonizzoni, P., De Felice, C., Zizza, R.: The structure of reflexive regular splicing languages via Schützenberger constants. Theoretical Computer Science 334, 71–98 (2005)CrossRefMathSciNetMATHGoogle Scholar
  2. 2.
    Bonizzoni, P., De Felice, C., Mauri, G., Zizza, R.: Linear splicing and syntactic monoid. Discrete Applied Mathematics (to appear, 2005)Google Scholar
  3. 3.
    Bonizzoni, P., De Felice, C., Mauri, G., Zizza, R.: Regular Languages Generated by Reflexive Finite Linear Splicing Systems. In: Ésik, Z., Fülöp, Z. (eds.) DLT 2003. LNCS, vol. 2710, pp. 134–145. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  4. 4.
    Bonizzoni, P., Ferretti, C., Mauri, G., Zizza, R.: Separating some splicing models. Information Processing Letters 76(6), 255–259 (2001)CrossRefMathSciNetGoogle Scholar
  5. 5.
    Bonizzoni, P., Mauri, G.: Regular splicing languages and subclasses. Theoretical Computer Science 340, 349–363 (2005)CrossRefMathSciNetMATHGoogle Scholar
  6. 6.
    Culik, K., Harju, T.: Splicing semigroups of dominoes and DNA. Discrete Applied Math. 31, 261–277 (1991)CrossRefMathSciNetMATHGoogle Scholar
  7. 7.
    Head, T.: Formal Language Theory and DNA: an analysis of the generative capacity of specific recombinant behaviours. Bull. Math. Biol. 49, 737–759 (1987)MathSciNetMATHGoogle Scholar
  8. 8.
    Head, T.: Splicing languages generated with one sided context. In: Paun, G. (ed.) Computing with Bio-molecules. Theory and Experiments. Springer, Singapore (1998)Google Scholar
  9. 9.
    Goode, E., Pixton, D.: Recognizing splicing languages: Syntactic Monoids and Simultaneous Pumping (submitted, 2004), available from: http://www.math.binghamton.edu/dennis/Papers/index.html
  10. 10.
    Paun, G.: On the splicing operation. Discrete Applied Math. 70, 57–79 (1996)CrossRefMathSciNetMATHGoogle Scholar
  11. 11.
    Paun, G., Rozenberg, G., Salomaa, A.: DNA computing, New Computing Paradigms. Springer, Berlin (1998)MATHGoogle Scholar
  12. 12.
    Perrin, D.: Finite Automata. In: Van Leeuwen, J. (ed.) Handbook of Theoretical Computer Science, vol. B, pp. 1–57. Elsevier, Amsterdam (1990)Google Scholar
  13. 13.
    Pixton, D.: Regularity of splicing languages. Discrete Applied Math. 69, 101–124 (1996)CrossRefMathSciNetMATHGoogle Scholar
  14. 14.
    Schützenberger, M.P.: Sur certaines opérations de fermeture dans les langages rationnels. Symposia Mathematica 15, 245–253 (1975)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Paola Bonizzoni
    • 1
  • Giancarlo Mauri
    • 1
  1. 1.Dipartimento di Informatica Sistemistica e ComunicazioneUniversità degli Studi di Milano – BicoccaMilanoItaly

Personalised recommendations