Ciliate Bio-operations on Finite String Multisets

  • Jürgen Dassow
  • György Vaszil
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4036)


We study properties of string operations motivated by the gene assembly process of ciliates. We examine the effect of these operations applied to finite multisets of words which make it possible to study not only sequential, but also different types of parallel derivation strategies. We compare the classes of finite languages which can be obtained by the different strategies, and show that although the string operations we consider are reversible, their parallel application can produce effects resembling the irreversibility of the biological process of gene assembly in ciliates.


Sequential Mode Gene Assembly Derivation Step Language Class Parallel Derivation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Daley, M., McQuillan, I.: Template-guided DNA recombination. Theoretical Computer Science 330, 237–250 (2005)zbMATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Kari, L., Daley, M.: Some Properties of Ciliate Bio-operations. In: Ito, M., Toyama, M. (eds.) DLT 2002. LNCS, vol. 2450, pp. 116–127. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  3. 3.
    Daley, M., Ibarra, O., Kari, L.: Closure properties and decision questions of some language classes under ciliate bio-operations. Theoretical Computer Science 306, 19–38 (2003)zbMATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Dassow, J., Holzer, M.: Language families defined by a ciliate bio-operation: Hierarchies and decision problems. International Journal of Foundations of Computer Science 16, 645–662 (2005)zbMATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Dassow, J., Vaszil, G.: Multiset splicing systems. BioSystems 74, 1–7 (2004)CrossRefGoogle Scholar
  6. 6.
    Ehrenfeucht, A., Harju, T., Petre, I., Prescott, D.M., Rozenberg, G.: Computation in Living Cells. Gene Assembly in Ciliates. Springer, Heidelberg (2003)Google Scholar
  7. 7.
    Ehrenfeucht, A., Prescott, D.M., Rozenberg, G.: Computational aspects of gene (un)scrambling in ciliates. In: Landweber, L., Winfree, E. (eds.) Evolution as Computation, pp. 216–256. Springer, Heidelberg (2001)Google Scholar
  8. 8.
    Harju, T., Li, C., Petre, I., Rozenberg, G.: Parallelism in gene assembly. In: Ferretti, C., Mauri, G., Zandron, C. (eds.) DNA 2004. LNCS, vol. 3384, pp. 138–148. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  9. 9.
    Harju, T., Petre, I., Rozenberg, G.: Two models for gene assembly in ciliates. In: Karhumäki, J., Maurer, H., Păun, G., Rozenberg, G. (eds.) Theory Is Forever. LNCS, vol. 3113, pp. 89–101. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  10. 10.
    Landweber, L.F., Kari, L.: The evolution of cellular computing: Nature’s solution to a computational problem. BioSystems 52, 3–13 (1999); (Special issue: Proceedings of the 4th DIMACS meeting on DNA based computers, guest editors: Kari, L., Rubin, H., Wood, D.)Google Scholar
  11. 11.
    Kari, L., Kari, J., Landweber, L.F.: Reversible molecular computation in ciliates. In: Karhumäki, J., Maurer, H., Păun, G., Rozenberg, G. (eds.) Jewels are Forever, pp. 353–363. Springer, Heidelberg (1999)Google Scholar
  12. 12.
    Prescott, D.M., Ehrenfeucht, A., Rozenberg, G.: Template-guided recombination for IES elimination and unscrambling of genes in stichotrichous ciliates. Journal of Theoretical Biology 222, 323–330 (2003)CrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Jürgen Dassow
    • 1
  • György Vaszil
    • 2
  1. 1.Fakultät für InformatikOtto-von-Guericke-Universität MagdeburgMagdeburgGermany
  2. 2.Computer and Automation Research InstituteHungarian Academy of SciencesBudapestHungary

Personalised recommendations