Explicit Inverse Characterizations of Acyclic MAPs of Second Order

  • Armin Heindl
  • Gábor Horváth
  • Karsten Gross
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4054)

Abstract

This paper shows how to construct a Markovian arrival process of second order from information on the marginal distribution and on its autocorrelation function. More precisely, closed-form explicit expressions for the MAP(2) rate matrices are given in terms of the first three marginal moments and one parameter that characterizes the behavior of the autocorrelation function. Besides the permissible moment ranges, which were known before, also the necessary and sufficient bounds for the correlation parameter are computed and shown to depend on a free parameter related to equivalent acyclic PH(2) representations of the marginal distribution. We identify the choices for the free parameter that maximize the correlation range for both negative and positive correlation parameters.

Keywords

Acyclic Markovian arrival processes of second order inverse characterization moment and correlation bounds 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Neuts, M.: Matrix-Geometric Solutions in Stochastic Models. John Hopkins University Press (1981)Google Scholar
  2. 2.
    Neuts, M.: Structured Stochastic Matrices of M/G/1-type and their Applications. Marcel Dekker, New York (1989)MATHGoogle Scholar
  3. 3.
    Latouche, G., Ramaswami, V.: Introduction to Matrix-Analytic Methods in Stochastic Modeling. Series on statistics and applied probability. ASA-SIAM, Philadelphia (1999)CrossRefGoogle Scholar
  4. 4.
    Buchholz, P.: An EM-algorithm for MAP fitting from real traffic data. In: Kemper, P., Sanders, W.H. (eds.) TOOLS 2003. LNCS, vol. 2794, pp. 218–236. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  5. 5.
    Horváth, G., Buchholz, P., Telek, M.: A MAP fitting approach with independent approximation of the inter-arrival time distribution and the lag correlation. In: Proc. 2nd Int. Conf. on Quantitative Evaluation of Systems, Torino, Italy, pp. 124–133 (2005)Google Scholar
  6. 6.
    Horváth, A., Telek, M.: Markovian modeling of real data traffic: Heuristic phase-type and MAP fitting of heavy tailed and fractal-like samples. In: Calzarossa, M.C., Tucci, S. (eds.) Performance 2002. LNCS, vol. 2459. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  7. 7.
    Horváth, A., Telek, M.: Fitting more than three moments with acyclic phase-type distributions (submitted, 2006)Google Scholar
  8. 8.
    Telek, M., Heindl, A.: Matching moments for acyclic discrete and continuous phase-type distributions of second order. Intl. Journal of Simulation 3, 47–57 (2003)Google Scholar
  9. 9.
    Bobbio, A., Horváth, A., Telek, M.: Matching three moments with minimal acyclic phase-type distributions. Stochastic Models 21, 303–323 (2005)MATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Mitchell, K., van de Liefvoort, A.: Approximation models of feed-forward G/G/1/N queueing networks with correlated arrivals. Performance Evaluation 51, 137–152 (2003)CrossRefGoogle Scholar
  11. 11.
    Mitchell, K.: Constructing a correlated sequence of matrix exponentials with invariant first-order properties. Operations Research Letters 28, 27–34 (2001)MATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Heindl, A., Mitchell, K., van de Liefvoort, A.: The correlation region of second-order MAPs with application to queueing network decomposition. In: Kemper, P., Sanders, W.H. (eds.) TOOLS 2003. LNCS, vol. 2794, pp. 237–254. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  13. 13.
    Heindl, A.: Inverse characterization of hyperexponential MAP(2)s. In: Proc. 11th Int. Conference on Analytical and Stochastic Modelling Techniques and Applications, Magdeburg, Germany, pp. 183–189 (2004)Google Scholar
  14. 14.
    Heffes, H., Lucantoni, D.M.: A Markov-modulated characterization of packetized voice and data traffic and related statistical multiplexer performance. IEEE J. on Selected Areas in Commun. 4, 856–868 (1986)CrossRefGoogle Scholar
  15. 15.
    Ferng, H.W., Chang, J.F.: Connection-wise end-to-end performance analysis of queueing networks with MMPP inputs. Performance Evaluation 43, 39–62 (2001)MATHCrossRefGoogle Scholar
  16. 16.
    Livny, M., Melamed, B., Tsiolis, A.K.: The impact of autocorrelation on queueing systems. Management Science 39, 322–339 (1993)MATHCrossRefGoogle Scholar
  17. 17.
    Patuwo, B., Disney, R., McNickle, D.: The effect of correlated arrivals on queues. IIE Transactions 25, 105–110 (1993)CrossRefGoogle Scholar
  18. 18.
    Neuts, M.: Algorithmic Probability: A Collection of Problems. Chapman and Hall, Boca Raton (1995)MATHGoogle Scholar
  19. 19.
    van de Liefvoort, A.: The moment problem for continuous distributions. Technical Report WP-CM-1990-02, School of Computing and Engineering, University of Missouri – Kansas City, USA (1990)Google Scholar
  20. 20.
    Gross, K.: Analytische Konstruktion korrelierter Prozesse zur Lastmodellierung in Kommunikationssystemen. Master’s thesis, Informatik 7, Universität Erlangen-Nürnberg, Germany (2006)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Armin Heindl
    • 1
  • Gábor Horváth
    • 2
  • Karsten Gross
    • 1
  1. 1.Computer Networks and Communication SystemsUniversität Erlangen-NürnbergErlangenGermany
  2. 2.Dept. of TelecommunicationsTechnical University of BudapestBudapestHungary

Personalised recommendations