Experimental Analysis of the Correlation of HTTP GET Invocations

  • Philipp Reinecke
  • Aad P. A. van Moorsel
  • Katinka Wolter
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4054)


In this paper we experimentally investigate if optimal retry times can be determined based on models that assume independence of successive tries. We do this using data obtained for HTTP GET. This data provides application-perceived timing characteristics for the various phases of web page download, including response times for TCP connection set-ups and individual object downloads. The data consists of pairs of consecutive downloads for over one thousand randomly chosen URLs. Our analysis shows that correlation exists for normally completed invocations, but is remarkably low for relatively slow downloads. This implies that for typical situations in which retries are applied, models relying on the independence assumption are appropriate.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    The data discussed in this paper is available from the web site,
  2. 2.
    Alt, H., Guibas, L., Mehlhorn, K., Karp, R., Wigderson, A.: A Method for Obtaining Randomized Algorithms with Small Tail Probabilities. Algorithmica 16(4/5), 543–547 (1996)zbMATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Donelson Smith, F., Hernandez Campos, F., Jeffay, K., Ott, D.: What TCP/IP Protocol Headers Can tell Us About The Web. SIGMETRICS, pp. 245–256 (2001)Google Scholar
  4. 4.
    Luby, M., Sinclair, A., Zuckerman, D.: Optimal Speedup of Las Vegas Algorithms. In: Israel Symposium on Theory of Computing Systems, pp. 128–133 (1993)Google Scholar
  5. 5.
    Maurer, S.M., Huberman, B.A.: Restart strategies and Internet congestion. Journal of Economic Dynamics and Control 25, 641–654 (2001)zbMATHCrossRefGoogle Scholar
  6. 6.
    Reinecke, P., van Moorsel, A., Wolter, K.: A Measurement Study of the Interplay between Application Level Restart and Transport Protocol. In: Malek, M., Reitenspiess, M., Kaiser, J. (eds.) ISAS 2004. LNCS, vol. 3335, pp. 86–100. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  7. 7.
    Ruan, Y., Horvitz, E., Kautz, H.: Restart Policies with Dependence among Runs: A Dynamic Programming Approach. In: Van Hentenryck, P. (ed.) CP 2002. LNCS, vol. 2470. Springer, Heidelberg (2002)Google Scholar
  8. 8.
    Schroeder, M., Boro, L.: Does the Restart Method Work? Preliminary Results on Efficiency Improvements for Interactions of Web-Agents. In: Wagner, T., Rana, O. (eds.) Proceedings of the Workshop on Infrastructure for Agents, MAS, and Scalable MAS at the Conference Autonomous Agents 2001. Springer, Heidelberg (2001)Google Scholar
  9. 9.
    van Moorsel, A., Wolter, K.: Analysis and Algorithms for Restart. In: Proceedings of International Conference on Quantitative Evaluation of Systems, Twente, Netherlands, pp. 195–204 (2004)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Philipp Reinecke
    • 1
  • Aad P. A. van Moorsel
    • 2
  • Katinka Wolter
    • 1
  1. 1.Humboldt-Universität zu Berlin, Institut für InformatikBerlinGermany
  2. 2.School of Computing ScienceUniversity of Newcastle upon TyneNewcastle upon TyneUnited Kingdom

Personalised recommendations