Advertisement

TreeCluster: Clustering Results of Keyword Search over Databases

  • Zhaohui Peng
  • Jun Zhang
  • Shan Wang
  • Lu Qin
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4016)

Abstract

A critical challenge in keyword search over relational data- bases (KSORD) is to improve its result presentation to facilitate users’ quick browsing through search results. An effective method is to organize the results into clusters. However, traditional clustering method is not applicable to KSORD search results. In this paper, we propose a novel clustering method named TreeCluster. In the first step, we use labels to represent schema information of each result tree and reformulate the clustering problem as a problem of judging whether labeled trees are isomorphic. In the second step, we rank user keywords according to their frequencies in databases, and further partition the large clusters based on keyword nodes. Furthermore, we give each cluster a readable description, and present the description and each result graphically to help users understand the results more easily. Experimental results verify our method’s effectiveness and efficiency.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Wang, S., Zhang, K.-L.: Searching Databases with Keywords. Journal of Computer Science and Technology 20(1) (January 2005)Google Scholar
  2. 2.
    Hulgeri, A., Bhalotia, G., Nakhe, C., et al.: Keyword Search in Databases. IEEE Data Engineering Bulletin 24, 22–32 (2001)Google Scholar
  3. 3.
    Bhalotia, G., Hulgeri, A., Nakhe, C., et al.: Keyword Searching and Browsing in Databases using BANKS. In: ICDE (2002)Google Scholar
  4. 4.
    Kacholia, V., Pandit, S., Chakrabarti, S., et al.: Bidirectional Expansion For Keyword Search on Graph Databases. In: VLDB 2005, pp. 505–516 (2005)Google Scholar
  5. 5.
    Agrawal, S., et al.: DBXplorer: A System For Keyword-Based Search Over Relational Databases. In: ICDE 2002 (2002)Google Scholar
  6. 6.
    Hristidis, V., et al.: DISCOVER: Keyword Search in Relational Databases. In: VLDB 2002 (2002)Google Scholar
  7. 7.
    Hristidis, V., et al.: Efficient IR-Style Keyword Search over Relational Databases. In: VLDB 2003 (2003)Google Scholar
  8. 8.
    Balmin, A., et al.: ObjectRank: Authority-Based Keyword Search in Databases. In: VLDB 2004 (2004)Google Scholar
  9. 9.
    K.-L. Zhang.: Research on New Preprocessing Technology for Keyword Search in Databases. PH.D thesis of Renmin University of China (2005) Google Scholar
  10. 10.
    Aho, A.V., Hopcroft, J.E., Ullman, J.D.: The Design and Analysis of Computer Algorithms. Addison-Wesley, Reading (1974)zbMATHGoogle Scholar
  11. 11.
    Dar, S., et al.: DTL’s DataSpot:Database Exploration Using Plain Language. In: VLDB 1998 (1998)Google Scholar
  12. 12.
    Wheeldon, R., et al.: DbSurfer: A Search and Navigation Took for Relational Databases. In: The 21st Annual British National Conference on Databases (2004)Google Scholar
  13. 13.
    B. Aditya, et al.: User Interaction in the BANKS System: A Demostration. In: ICDE 2003, Demo (2003)Google Scholar
  14. 14.
  15. 15.
    Riedl, J., Konstan, J.: MoveLens, http://www.grouplens.org/
  16. 16.
    Hristidis, V., et al.: Keyword Proximity Search on XML Graphs. In: ICDE 2003 (2003)Google Scholar
  17. 17.
    Cutting, D.R., et al.: Constant Interaction-Time Scatter/Gather Browsing of Very Large Document Collections. In: SIGIR 1993 (1993)Google Scholar
  18. 18.
    Zamir, O., et al.: Web Document Clustering: A Feasibility Demonstration. In: SIGIR 1998 (1998)Google Scholar
  19. 19.
    Zenget, H.-J.: Learning to Cluster Web Search Results. In: SIGIR 2004 (2004)Google Scholar
  20. 20.
    Vivisimo clustering engine (2004), http://vivisimo.com
  21. 21.
    Chakrabarti, K., et al.: Automatic Categorization of Query Results. In: SIGMOD 2004 (2004)Google Scholar
  22. 22.
    Jain, A.K., et al.: Data Clustering: A Review. ACM Computing Surveys 31(3), 264–323 (1999)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Zhaohui Peng
    • 1
  • Jun Zhang
    • 1
    • 2
  • Shan Wang
    • 1
  • Lu Qin
    • 1
  1. 1.School of InformationRenmin University of ChinaBeijingP.R. China
  2. 2.Computer Science and Technology CollegeDalian Maritime UniversityDalianP.R. China

Personalised recommendations