A Portfolio Selection Method Based on Possibility Theory

  • Wei-Guo Zhang
  • Qianqin Chen
  • Hai-Lin Lan
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4041)


This paper discusses the portfolio selection problem based on the possibilistic theory. The possibilistic portfolio model with general constraints to investment is proposed by means of possibilistic mean value and possibilistic variance. The conventional probabilistic mean-variance model can be simplified under the assumption that the returns of assets are triangular fuzzy numbers. Finally, a numerical example of the portfolio selection problem is given to illustrate our proposed effective means and approaches.


Fuzzy Number Portfolio Selection Risky Asset Triangular Fuzzy Number Portfolio Selection Problem 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Markowitz, H.: Portfolio selection: efficient diversification of Investments. Wiley, New York (1959)Google Scholar
  2. 2.
    Perold, A.F.: Large-scale portfolio optimization. Management Science 30, 1143–1160 (1984)zbMATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Pang, J.S.: A new efficient algorithm for a class of portfolio selection problems. Operational Research 28, 754–767 (1980)zbMATHGoogle Scholar
  4. 4.
    Vörös, J.: Portfolio analysis-An analytic derivation of the efficient portfolio frontier. European journal of operational research 203, 294–300 (1986)CrossRefGoogle Scholar
  5. 5.
    Best, M.J., Hlouskova, J.: The efficient frontier for bounded assets. Math. Meth. Oper. Res. 52, 195–212 (2000)zbMATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Watada, J.: Fuzzy portfolio selection and its applications to decision making. Tatra Mountains Mathematical Publication 13, 219–248 (1997)zbMATHMathSciNetGoogle Scholar
  7. 7.
    Tanaka, H., Guo, P.: Portfolio selection based on upper and lower exponential possibility distributions. European Journal of Operational Research 114, 115–126 (1999)zbMATHCrossRefGoogle Scholar
  8. 8.
    Inuiguchi, M., Tanino, T.: Portfolio selection under independent possibilistic information. Fuzzy Sets and Systems 115, 83–92 (2000)zbMATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Zhang, W.G., Nie, Z.K.: On admissible efficient portfolio selection problem. Applied mathematics and computation 159, 357–371 (2004)zbMATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Zadeh, L.A.: Fuzzy Sets. Inform. and Control 8, 338–353 (1965)zbMATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Dubois, D., Prade, H.: The mean value of a fuzzy number. Fuzzy Sets and Systems 24, 279–300 (1987)zbMATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Dubois, D., Prade, H.: Fuzzy sets and systems: Theory and applications. Academic Press, New York (1980)zbMATHGoogle Scholar
  13. 13.
    Carlsson, C., Fullér, R.: On possibilistic mean value and variance of fuzzy numbers. Fuzzy Sets and Systems 122, 315–326 (2001)zbMATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    Carlsson, C., Fullér, R., Majlender, P.: A possibilistic approach to selecting portfolios with highest utility score. Fuzzy Sets and Systems 131, 13–21 (2002)zbMATHCrossRefMathSciNetGoogle Scholar
  15. 15.
    Zhang, W.G., Liu, W.A., Wang, Y.L.: A Class of Possibilistic Portfolio Selection Models and Algorithms. In: Deng, X., Ye, Y. (eds.) WINE 2005. LNCS, vol. 3828, pp. 464–472. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  16. 16.
    Zhang, W.G., Wang, Y.L.: Portfolio selection: Possibilistic mean-variance model and possibilistic efficient frontier. In: Megiddo, N., Xu, Y., Zhu, B. (eds.) AAIM 2005. LNCS, vol. 3521, pp. 203–213. Springer, Heidelberg (2005)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Wei-Guo Zhang
    • 1
    • 2
  • Qianqin Chen
    • 1
  • Hai-Lin Lan
    • 1
  1. 1.School of Business AdministrationSouth China University of TechnologyGuangzhouP.R. China
  2. 2.School of ManagementXi’an Jiaotong UniversityXi’anP.R. China

Personalised recommendations