Advertisement

Polygonal Curve Approximation Using Grid Points with Application to a Triangular Mesh Generation with Small Number of Different Edge Lengths

  • Shin-ichi Tanigawa
  • Naoki Katoh
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4041)

Abstract

For a given x-monotone polygonal curve each of whose edge lengths is between \(\underline{l}\) and \(2\underline{l}\), we consider the problem of approximating it by another x-monotone polygonal curve using points of a square grid so that there exists a small number of different edge lengths and every edge length is between \(\underline{l}\) and \(\beta \underline{l}\), where β is a given parameter satisfying 1≤β≤2. Our first algorithm computes an approximate polygonal curve using fixed square grid points in O((n/α 4)log(n/α)) time. Based on this, our second algorithm finds an approximate polygonal curve as well as an optimal grid placement simultaneously in O((n 3/α 12)log2(n/α)) time, where α is a parameter that controls the closeness of approximation. Based on the approximate polygonal curve, we shall give an algorithm for finding a uniform triangular mesh for an x-monotone polygon with a constant number of different edge lengths.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Agarwal, P.K., Aronov, B., Sharir, M., Suri, S.: Selecting distances in the plane. Algorithmica 9(5), 495–514 (1993)zbMATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Agarwal, P.K., Har-Peled, S., Mustafa, N.H., Wang, Y.: Near-linear time approximation algorithms for curve simplification. In: Möhring, R.H., Raman, R. (eds.) ESA 2002. LNCS, vol. 2461, pp. 29–41. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  3. 3.
    Agarwal, P.K., Sharir, M., Toledo, S.: Applications of parametric searching in geometric optimizationGoogle Scholar
  4. 4.
    Agarwal, P.K., Varadarajan, K.R.: Efficient algorithms for approximating polygonal chains. Discrete & Comp., Geom. 23(2), 273–291 (2000)zbMATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Aronov, B., Asano, T., Katoh, N., Mehlhorn, K., Tokuyama, T.: Polyline fitting of planar points under min-sum criteria. In: Fleischer, R., Trippen, G. (eds.) ISAAC 2004. LNCS, vol. 3341, pp. 77–88. Springer, Heidelberg (2004); Int. J. of Comput. Geom. & Appl. (to appear)CrossRefGoogle Scholar
  6. 6.
    Chan, W.S., Chin, F.: Approximation of polygonal curves with minimum number of line segments or minimum error. Int. J. Comput. Geometry Appl. 6(1), 59–77 (1996)zbMATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Chen, D.Z., Daescu, O.: Space-efficient algorithms for approximating polygonal curves in two-dimensional space. Int. J. Comput. Geometry Appl. 13(2), 95–111 (2003)zbMATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Edelsbrunner, H., Guibas, L.J., Pach, J., Pollack, R., Seidel, R., Sharir, M.: Arrangements of curves in the plane - topology, combinatorics and algorithms. Theor. Comput. Sci. 92(2), 319–336 (1992)zbMATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Goodrich, M.T.: Efficient piecewise-linear function approximation using the uniform metric. Discrete & Comput. Geom. 14(4), 445–462 (1995)zbMATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Gudmundsson, J., Narasimhan, G., Smid, M.H.M.: Distance-preserving approximations of polygonal paths. In: Pandya, P.K., Radhakrishnan, J. (eds.) FSTTCS 2003. LNCS, vol. 2914, pp. 217–228. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  11. 11.
    Guibas, L.J., Hershberger, J., Mitchell, J.S.B., Snoeyink, J.: Approximating polygons and subdivisions with minimum link paths. Int. J. Comput. Geometory Appl. 3(4), 383–415 (1993)zbMATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Imai, H., Iri, M.: An optimal algorithm for approximating a piecewise linear function. Info. Proc. Letters 9(3), 159–162 (1986)zbMATHMathSciNetGoogle Scholar
  13. 13.
    Imai, H., Iri, M.: Polygonal approximations of a curve - formulatons and algorithms. In: Toussaint, G.T. (ed.) Comp. Morphology, pp. 71–86. North-Holland, Amsterdam (1988)Google Scholar
  14. 14.
    Katoh, N., Ohsaki, M., Xu, Y.: A uniform triangle mesh generation of curved surfaces. In: Akiyama, J., Kano, M., Tan, X. (eds.) JCDCG 2004. LNCS, vol. 3742. Springer, Heidelberg (2005)Google Scholar
  15. 15.
    Lee, D.T., Robert, I., Drysdale, L.: Generalization of voronoi diagrams in the plane. SIAM J. Comput. 10(1), 73–87 (1981)zbMATHCrossRefMathSciNetGoogle Scholar
  16. 16.
    Megiddo, N.: Applying parallel computation algorithms in the design of serial algorithms. J. ACM 30(4), 852–865 (1983)zbMATHCrossRefMathSciNetGoogle Scholar
  17. 17.
    Melkman, A., O’Rourke, J.: On polygonal chain approximation. In: Toussaint, G.T. (ed.) Comp. Morphology, pp. 87–95. North-Holland, Amsterdam (1988)Google Scholar
  18. 18.
    Tanigawa, S., Katoh, N.: Finding a triangular mesh with a constant number of different edge lengths. In: Proc. of the 17th Canad. Conf. on Comput. Geom. (2005), http://cccg.cs.uwindsor.ca/papers/41.pdf
  19. 19.
    Xu, Y.F., Dai, W., Katoh, N., Ohsaki, M.: Triangulating a convex polygon with small number of non-standard bars. In: Wang, L. (ed.) COCOON 2005. LNCS, vol. 3595, pp. 481–489. Springer, Heidelberg (2005)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Shin-ichi Tanigawa
    • 1
  • Naoki Katoh
    • 1
  1. 1.Department of Architecture and Architectural EngineeringKyoto UniversityKyotoJapan

Personalised recommendations