On the Notion of Dimension in Digital Spaces

  • Valentin E. Brimkov
  • Angelo Maimone
  • Giorgio Nordo
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4040)


Dimension is a fundamental concept in topology. Mylopoulos and Pavlidis [17] provided a definition for discrete spaces. In the present paper we propose an alternative one for the case of planar digital objects. It makes up certain shortcomings of the definition from [17] and implies dimensionality properties analogous to those familiar from classical topology. We also establish relations between dimension of digital objects and their Euler characteristic.


digital topology 2D binary object dimension 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Andres, E., Acharya, R., Sibata, C.: Discrete analytical hyperplanes. Graphical Models and Image Processing 59, 302–309 (1997)CrossRefGoogle Scholar
  2. 2.
    Andres, E., Nehlig, P., Françon, J.: Tunnel-free supercover 3D polygons and polyhedra. In: Fellner, D., Szirmay-Kalos, L. (Guest eds.) EUROGRAPHICS 1997, pp. C3–C13 (1997)Google Scholar
  3. 3.
    Berge, C.: Graphs and Hypergraphs. North-Holland, Amsterdam (1976)zbMATHGoogle Scholar
  4. 4.
    Brimkov, V.E., Andres, E., Barneva, R.P.: Object discretizations in higher dimensions. Pattern Recognition Letters 23, 623–636 (2002)zbMATHCrossRefGoogle Scholar
  5. 5.
    Brimkov, V.E., Klette, R.: Curves, hypersurfaces, and good pairs of adjacency relations. In: Klette, R., Žunić, J. (eds.) IWCIA 2004. LNCS, vol. 3322, pp. 270–284. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  6. 6.
    Brimkov, V.E., Maimone, A., Nordo, G., Barneva, R., Klette, R.: The number of gaps in binary pictures. In: Bebis, G., Boyle, R., Koracin, D., Parvin, B. (eds.) ISVC 2005. LNCS, vol. 3804, pp. 35–42. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  7. 7.
    Brimkov, V.E., Maimone, A., Nordo, G.: Counting Gaps in Binary Pictures. In: Reulke, R., Eckardt, U., Flach, B., Knauer, U., Polthier, K. (eds.) IWCIA 2006. LNCS, vol. 4040, pp. 16–24. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  8. 8.
    Chen, L.: Discrete Surfaces and Manifolds, Scientific & Practical Computing (2004)Google Scholar
  9. 9.
    Dougherty, E.R., Lotufo, R.: Hands on Morphological Image Processing, vol. TT59. SPIE Press, Washington (2003)CrossRefGoogle Scholar
  10. 10.
    Engelking, R.: General Topology. Heldermann, Berlin (1989)zbMATHGoogle Scholar
  11. 11.
    Hurewicz, W., Wallman, H.: Dimension Theory. Princeton U. Press, NJ (1941)Google Scholar
  12. 12.
    Klette, R., Rosenfeld, A.: Digital Geometry - Geometric Methods for Digital Picture Analysis. Morgan Kaufmann, San Francisco (2004)zbMATHGoogle Scholar
  13. 13.
    Kong, T.Y.: Digital topology. In: Davis, L.S. (ed.) Foundations of Image Understanding, pp. 33–71. Kluwer, Boston (2001)Google Scholar
  14. 14.
    Kovalevsky, V.A.: Finite topology as applied to image analysis. Computer Vision, Graphics and Image Processing 46(2), 141–161Google Scholar
  15. 15.
    Menger, K.: Kurventheorie. Teubner, Leipzig, Germany (1932)Google Scholar
  16. 16.
    Mylopoulos, J.P.: On the definition and recognition of patterns in discrete spaces, Ph.D. Thesis, Princeton University (August 1970); Tech. Rep. 84, Comput. Sci. Lab. Princeton University, Princeton, NJGoogle Scholar
  17. 17.
    Mylopoulos, J.P., Pavlidis, T.: On the topological properties of quantized spaces. I. The notion of dimension. J. ACM 18, 239–246 (1971)CrossRefMathSciNetGoogle Scholar
  18. 18.
    Serra, J.: Image Analysis and Mathematical Morphology. Academic Press, London (1982)zbMATHGoogle Scholar
  19. 19.
    Urysohn, P.: Über die allgemeinen Cantorischen Kurven, Annual meeting, Deutsche Mathematiker Vereinigung, Marbourg, Germany (1923)Google Scholar
  20. 20.
    Voss, K.: Discrete Images, Objects, and Functions in Z n. Springer, Berlin (1993)zbMATHGoogle Scholar
  21. 21.
    Weisstein, W.: CW-Complex, MathWorld – A Wolfram Web Resource,

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Valentin E. Brimkov
    • 1
  • Angelo Maimone
    • 2
  • Giorgio Nordo
    • 2
  1. 1.Mathematics DepartmentSUNY Buffalo State CollegeBuffaloUSA
  2. 2.Dipartimento di MatematicaUniversità di MessinaMessinaItaly

Personalised recommendations