Topological Map: An Efficient Tool to Compute Incrementally Topological Features on 3D Images

  • Guillaume Damiand
  • Samuel Peltier
  • Laurent Fuchs
  • Pascal Lienhardt
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4040)

Abstract

In this paper, we show how to use the three dimensional topological map in order to compute efficiently topological features on objects contained in a 3D image. These features are useful for example in image processing to control operations or in computer vision to characterize objects. Topological map is a combinatorial model which represents both topological and geometrical information of a three dimensional labeled image. This model can be computed incrementally by using only two basic operations: the removal and the fictive edge shifting. In this work, we show that Euler characteristic can be computed incrementally during the topological map construction. This involves an efficient algorithm and open interesting perspectives for other features.

Keywords

topological features model for image representation intervoxel boundaries combinatorial map 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bertrand, Y., Damiand, G., Fiorio, C.: Topological map: Minimal encoding of 3d segmented images. In: Workshop on Graph-Based Representations in Pattern Recognition, Ischia, Italy, IAPR-TC15, pp. 64–73 (2001)Google Scholar
  2. 2.
    Damiand, G.: Définition et étude d’un modèle topologique minimal de représentation d’images 2D et 3D. Thèse de doctorat, Université Montpellier II (2001)Google Scholar
  3. 3.
    Hatcher, A.: Algebraic Topology. Cambridge University Press, Cambridge (2002), available on: http://www.math.cornell.edu/~hatcher/AT/ATpage.html MATHGoogle Scholar
  4. 4.
    Agoston, M.K.: Algebraic Topology, a first course. In: Dekker, M. (ed.) Pure and applied mathematics (1976)Google Scholar
  5. 5.
    Klette, R., Rosenfeld, A.: Digital Geometry - Geometrics Methods for Digital Pictures Analysis. Morgan Kaufmann, San Francisco (2004)Google Scholar
  6. 6.
    Lee, C., Poston, T., Rosenfeld, A.: Holes and genus of 2D and 3D digital images. CVGIP: Graphical Models and Image Processing 55, 20–47 (1993)CrossRefGoogle Scholar
  7. 7.
    Imiya, A., Eckhardt, U.: The Euler Characteristics of discrete objects and discrete quasi-objects. Computer Vision and Image Understanding 75, 307–318 (1999)CrossRefGoogle Scholar
  8. 8.
    Desbarats, P., Domenger, J.P.: Retrieving and using topological characteristics from 3d discrete images. In: Proceedings of the Computer Vision Winter Workshop, pp. 130–139 (2002)Google Scholar
  9. 9.
    Brimkov, V., Maimone, A., Nordo, G.: An explicit formula for the number of tunnels in digital objects. ArXiv Computer Science e-prints (2005)Google Scholar
  10. 10.
    Spehner, J.: Merging in maps and in pavings. Theoretical Computer Science 86, 205–232 (1991)MATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Edmonds, J.: A combinatorial representation for polyhedral surfaces. Notices of the American Mathematical Society 7 (1960)Google Scholar
  12. 12.
    Tutte, W.: A census of planar maps. Canad. J. Math. 15, 249–271 (1963)MATHMathSciNetCrossRefGoogle Scholar
  13. 13.
    Jacques, A.: Constellations et graphes topologiques. Combinatorial Theory and Applications 2, 657–673 (1970)MathSciNetGoogle Scholar
  14. 14.
    Cori, R.: Un code pour les graphes planaires et ses applications. PhD thesis, Université Paris VII (1973)Google Scholar
  15. 15.
    Cori, R.: Un code pour les graphes planaires et ses applications. In: Astérisque, Soc. Math. de France, Paris, France, vol. 27 (1975)Google Scholar
  16. 16.
    Lienhardt, P.: Topological models for boundary representation: a comparison with n-dimensional generalized maps. Commputer Aided Design 23 (1991)Google Scholar
  17. 17.
    Damiand, G., Lienhardt, P.: Removal and contraction for n-dimensional generalized maps. In: Nyström, I., Sanniti di Baja, G., Svensson, S. (eds.) DGCI 2003. LNCS, vol. 2886, pp. 408–419. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  18. 18.
    Fiorio, C.: A topologically consistent representation for image analysis: the frontiers topological graph. In: Miguet, S., Ubéda, S., Montanvert, A. (eds.) DGCI 1996. LNCS, vol. 1176, pp. 151–162. Springer, Heidelberg (1996)Google Scholar
  19. 19.
    Brun, L., Domenger, J.P., Braquelaire, J.P.: Discrete maps: a framework for region segmentation algorithms. In: Workshop on Graph-Based Representations in Pattern Recognition, Lyon, IAPR-TC15 (1997); Published in Advances in Computing (Springer)Google Scholar
  20. 20.
    Pailloncy, J.G., Jolion, J.M.: The frontier-region graph. In: Workshop on Graph-Based Representations in Pattern Recognition. Computing Supplementum, vol. 12, pp. 123–134. Springer, Heidelberg (1997)Google Scholar
  21. 21.
    Braquelaire, J.P., Brun, L.: Image segmentation with topological maps and inter-pixel representation. Journal of Visual Communication and Image Representation 9, 62–79 (1998)CrossRefGoogle Scholar
  22. 22.
    Braquelaire, J.P., Desbarats, P., Domenger, J.P., Wüthrich, C.: A topological structuring for aggregates of 3d discrete objects. In: Workshop on Graph-Based Representations in Pattern Recognition, Austria, IAPR-TC15, pp. 193–202 (1999)Google Scholar
  23. 23.
    Bertrand, Y., Fiorio, C., Pennaneach, Y.: Border map: a topological representation for nd image analysis. In: Bertrand, G., Couprie, M., Perroton, L. (eds.) DGCI 1999. LNCS, vol. 1568, pp. 242–257. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  24. 24.
    Damiand, G., Bertrand, Y., Fiorio, C.: Topological model for two-dimensional image representation: definition and optimal extraction algorithm. Computer Vision and Image Understanding 93, 111–154 (2004)CrossRefGoogle Scholar
  25. 25.
    Bertrand, Y., Damiand, G., Fiorio, C.: Topological encoding of 3d segmented images. In: Nyström, I., Sanniti di Baja, G., Borgefors, G. (eds.) DGCI 2000. LNCS, vol. 1953, pp. 311–324. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  26. 26.
    Peltier, S., Alayrangues, S., Fuchs, L., Lachaud, J.O.: Computation of homology groups and generators. In: Andrès, É., Damiand, G., Lienhardt, P. (eds.) DGCI 2005. LNCS, vol. 3429, pp. 195–205. Springer, Heidelberg (2005)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Guillaume Damiand
    • 1
  • Samuel Peltier
    • 1
  • Laurent Fuchs
    • 1
  • Pascal Lienhardt
    • 1
  1. 1.SICFuturoscope ChasseneuilFrance

Personalised recommendations