Short Linkable Ring Signatures Revisited
Abstract
Ring signature is a group-oriented signature in which the signer can spontaneously form a group and generate a signature such that the verifier is convinced the signature was generated by one member of the group and yet does not know who actually signed. Linkable ring signature is a variant such that two signatures can be linked if and only if they were signed by the same person.
Recently, the first short linkable ring signature has been proposed. The short signature length makes it practical all of a sudden to use linkable ring signature as a building block in various cryptographic applications. However, we observed a subtle and yet imperative blemish glossed over by their security model definition which, if not carefully understood and properly handled, could lead to unanticipated security threats.
Inspired by the recent refinement of security definitions in conventional ring signatures, we formalize a new and better security model for linkable ring signature schemes that takes into account realistic adversarial capabilities. We show that the new model is strictly stronger than all existing ones in the literature. Under our new model, we propose a new short linkable ring signature scheme, improved upon the existing scheme.
Keywords
ring signature linkable ring signature short signaturePreview
Unable to display preview. Download preview PDF.
References
- 1.Adams, C., Farrell, S.: Internet X.509 Public Key Infrastructure Certificate Management Protocols. Internet Engineering Task Force: RFC 2510Google Scholar
- 2.Adida, B., Hohenberger, S., Rivest, R.L.: Separable Identity-Based Ring Signatures: Theoretical Foundations For Fighting Phishing Attacks. In: DIMACS Workshop on Theft in E-Commerce: Content, Identity, and Service, April 14–15, 2005, Piscataway, NJ, USA (to appear, 2005)Google Scholar
- 3.Bellare, M., Rogaway, P.: Random Oracles are Practical: a Paradigm for Designing Efficient Protocols. In: 1st ACM Conference on Computer and Communications Security, pp. 62–73. ACM Press, New York (1993)CrossRefGoogle Scholar
- 4.Bender, A., Katz, J., Morselli, R.: Ring Signatures: Stronger Definitions, and Constructions without Random Oracles. In: Halevi, S., Rabin, T. (eds.) TCC 2006. LNCS, vol. 3876, pp. 60–79. Springer, Heidelberg (2006)CrossRefGoogle Scholar
- 5.Camenisch, J., Lysyanskaya, A.: Dynamic Accumulators and Application to Efficient Revocation of Anonymous Credentials. In: Yung, M. (ed.) CRYPTO 2002. LNCS, vol. 2442, pp. 61–76. Springer, Heidelberg (2002)CrossRefGoogle Scholar
- 6.Camenisch, J.L., Michels, M.: Separability and Efficiency for Generic Group Signature Schemes (Extended Abstract). In: Wiener, M. (ed.) CRYPTO 1999. LNCS, vol. 1666, pp. 413–430. Springer, Heidelberg (1999)Google Scholar
- 7.Camenisch, J.L., Stadler, M.A.: Efficient Group Signature Schemes for Large Groups. In: Kaliski Jr., B.S. (ed.) CRYPTO 1997. LNCS, vol. 1294, pp. 410–424. Springer, Heidelberg (1997)Google Scholar
- 8.Chaum, D., van Heyst, E.: Group Signatures. In: Davies, D.W. (ed.) EUROCRYPT 1991. LNCS, vol. 547, pp. 257–265. Springer, Heidelberg (1991)Google Scholar
- 9.Chen, L., Kudla, C., Paterson, K.G.: Concurrent Signatures. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol. 3027, pp. 287–305. Springer, Heidelberg (2004)CrossRefGoogle Scholar
- 10.Chow, S.S.M., Yiu, S.-M., Hui, L.C.K.: Efficient Identity Based Ring Signature. In: Ioannidis, J., Keromytis, A.D., Yung, M. (eds.) ACNS 2005. LNCS, vol. 3531, pp. 499–512. Springer, Heidelberg (2005)CrossRefGoogle Scholar
- 11.Chow, S.S.M., Liu, J.K., Wei, V.K., Yuen, T.H.: Ring Signature without Random Oracles. In: ACM Symposium on InformAtion, Computer and Communications Security, ASIACCS 2006 (to appear, 2006); also available at Cryptology ePrint Archive, Report 2005/317Google Scholar
- 12.Chow, S.S.M., Lui, R.W.C., Hui, L.C.K., Yiu, S.M.: Identity Based Ring Signature: Why, How and What Next. In: Chadwick, D., Zhao, G. (eds.) EuroPKI 2005. LNCS, vol. 3545, pp. 144–161. Springer, Heidelberg (2005)CrossRefGoogle Scholar
- 13.Chow, S.S.M., Susilo, W.: Generic Construction of (Identity-based) Perfect Concurrent Signatures. In: Qing, S., Mao, W., López, J., Wang, G. (eds.) ICICS 2005. LNCS, vol. 3783, pp. 194–206. Springer, Heidelberg (2005)CrossRefGoogle Scholar
- 14.Dodis, Y., Kiayias, A., Nicolosi, A., Shoup, V.: Anonymous Identification in Ad Hoc Groups. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol. 3027, pp. 609–626. Springer, Heidelberg (2004)CrossRefGoogle Scholar
- 15.Fiege, U., Fiat, A., Shamir, A.: Zero Knowledge Proofs of Identity. In: STOC 1987: 19th Annual ACM conference on Theory of Computing, pp. 210–217. ACM Press, New York (1987)Google Scholar
- 16.Liu, J.K., Wei, V.K., Wong, D.S.: Linkable Spontaneous Anonymous Group Signature for Ad Hoc Groups. In: Wang, H., Pieprzyk, J., Varadharajan, V. (eds.) ACISP 2004. LNCS, vol. 3108, pp. 325–335. Springer, Heidelberg (2004)CrossRefGoogle Scholar
- 17.Liu, J.K., Wong, D.S.: Linkable Ring Signatures: Security Models and New Schemes. In: Gervasi, O., Gavrilova, M.L., Kumar, V., Laganá, A., Lee, H.P., Mun, Y., Taniar, D., Tan, C.J.K. (eds.) ICCSA 2005. LNCS, vol. 3481, pp. 614–623. Springer, Heidelberg (2005)CrossRefGoogle Scholar
- 18.Pointcheval, D., Stern, J.: Security Proofs for Signature Schemes. In: Maurer, U.M. (ed.) EUROCRYPT 1996. LNCS, vol. 1070, pp. 387–398. Springer, Heidelberg (1996)Google Scholar
- 19.Rivest, R.L., Shamir, A., Tauman, Y.: How to Leak a Secret. In: Boyd, C. (ed.) ASIACRYPT 2001. LNCS, vol. 2248, pp. 552–565. Springer, Heidelberg (2001)CrossRefGoogle Scholar
- 20.Rivest, R.L., Shamir, A., Tauman, Y.: How to Leak a Secret: Theory and Applications of Ring Signatures. In: Goldreich, O., Rosenberg, A.L., Selman, A.L. (eds.) Theoretical Computer Science. LNCS, vol. 3895, pp. 164–186. Springer, Heidelberg (2006)CrossRefGoogle Scholar
- 21.Tsang, P.P., Wei, V.K.: Short Linkable Ring Signatures for E-Voting, E-Cash and Attestation. In: Deng, R.H., Bao, F., Pang, H., Zhou, J. (eds.) ISPEC 2005. LNCS, vol. 3439, pp. 48–60. Springer, Heidelberg (2005)CrossRefGoogle Scholar
- 22.Wu, Q., Zhang, F., Susilo, W., Mu, Y.: An Efficient Static Blind Ring Signature Scheme. In: Won, D.H., Kim, S. (eds.) ICISC 2005. LNCS, vol. 3935, pp. 410–423. Springer, Heidelberg (2006)CrossRefGoogle Scholar