An Approach to Intelligent Training on a Robotic Simulator Using an Innovative Path-Planner

  • Roger Nkambou
  • Khaled Belghith
  • Froduald Kabanza
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4053)


In this paper, we describe the open knowledge structure of Roman Tutor, a simulation-based intelligent tutoring system we are developing to teach astronauts how to manipulate the Space Station Remote Manipulator (SSRMS), known as “Canadarm II”, on the International Space Station (ISS). We show that by representing the complex ISS-related knowledge in the form of a three-layered architecture with different levels of abstraction, and by using a new approach for robot path planning called FADPRM, it is no longer necessary to plan in advance what feedback to give to the learner or to explicitly create a complex task graph to support the tutoring process.


International Space Station Intelligent Tutoring System Spatial Reasoning Path Planner Robot Path Planning 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Forbus, K.: Articulate software for science and engineering education. In: Smart machines in education: The coming revolution in educational technology. AAAI Press, Menlo Park (2001)Google Scholar
  2. 2.
    Angros, R., Johnson, W.L., Rickel, J., Scholer, A.: Learning domain knowledge for teaching procedural skills. In: AAMAS, 1372–1378 (2002)Google Scholar
  3. 3.
    VanLehn, K.: The advantages of Explicity Representing Problem Spaces. In: Brusilovsky, P., Corbett, A.T., de Rosis, F. (eds.) UM 2003. LNCS, vol. 2702, p. 3. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  4. 4.
    Crowley, R.S., Medvedeva, O., Jukic, D.: SlideTutor - A model-tracing Intelligent Tutoring System for teaching microscopic diagnosis. In: Proceedings of Int. Conf. on Artificial Intelligence in Education (2003)Google Scholar
  5. 5.
    Bailey-Kellogg, C., Zhao, F.: Qualitative Spatial Reasoning Extracting and Reasoning with Spatial Aggregates. AI Magazine 24(4), 47–60 (2003)Google Scholar
  6. 6.
    Kuipers, B.: The Spatial Semantic Hierarchy. Artificial Intelligence 119, 191–233 (2000)zbMATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Latombe, J.C.: Robot motion planning. Kluwer Academic Publishers, Boston (1991)Google Scholar
  8. 8.
    Overmars, M.H.: Recent Developments in Motion Planning. In: Sloot, P.M.A., Tan, C.J.K., Dongarra, J., Hoekstra, A.G. (eds.) ICCS-ComputSci. 2002. LNCS, vol. 2331, pp. 3–13. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  9. 9.
    LaValle, S.M., Branicky, M.S., Lindemann, S.R.: On the relationship between classical grid search and probabilistic roadmaps. Int. Journal of Robotics Research 23, 673–692 (2004)CrossRefGoogle Scholar
  10. 10.
    Roy, J., Nkambou, R., Kabanza, F.: Supporting Spatial Awareness in Training on a Telemanipulator in Space. In: Lester, J.C., Vicari, R.M., Paraguaçu, F. (eds.) ITS 2004. LNCS, vol. 3220, pp. 860–863. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  11. 11.
    Belghith, K., Kabanza, F., Hartman, L., Nkambou, R.: Anytime Dynamic Path-Planning with Flexible Probabilistic Roadmaps. In: Proc. IEEE Int. Conf. on Robotics and Automation (2006)Google Scholar
  12. 12.
    Sanchez, G., Latombe, J.C.: A single-query bi-directional probabilistic roadmap planner with lazy collision checking. In: Int. Symposium on Robotics Research (ISRR 2001). Springer Tracts in Advanced Robotics, pp. 403–417. Springer, Heidelberg (2001)Google Scholar
  13. 13.
    Likhachev, M., Ferguson, D., Stentz, A., Thrun, S.: Anytime Dynamic A*: An Anytime Replanning Algorithme. In: Proc. of Int. Conf. on Automated Planning and Scheduling (2005)Google Scholar
  14. 14.
    Larsen, E., Gottschalk, S., Lin, M., Manocha, D.: Fast Distance Queries using Rectangular Swept Sphere Volumes. In: Proc. of IEEE Int. Conf. on Robotics and Automation, vol. 4, pp. 24–28 (2000)Google Scholar
  15. 15.
    Forbus, K.: Using qualitative physics to create articulate educational software. IEEE Expert, 32–41 (1997)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Roger Nkambou
    • 1
  • Khaled Belghith
    • 2
  • Froduald Kabanza
    • 2
  1. 1.Université du Québec à MontréalMontréalCanada
  2. 2.Université de SherbrookeSherbrookeCanada

Personalised recommendations