Addictive Links: The Motivational Value of Adaptive Link Annotation in Educational Hypermedia

  • Peter Brusilovsky
  • Sergey Sosnovsky
  • Michael Yudelson
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4018)


Adaptive link annotation is a popular adaptive navigation support technology. Empirical studies of adaptive annotation in the educational context have demonstrated that it can help students to acquire knowledge faster, improve learning outcome, reduce navigation overhead, and encourage non-sequential navigation. In this paper we present our study of a rather unknown effect of adaptive annotation, its ability to significantly increase student motivation to work with non-mandatory educational content. We explored this effect and confirmed its significance in the context of two different adaptive hypermedia systems. The paper presents and discusses the results of our work.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Brusilovsky, P.: Methods and techniques of adaptive hypermedia. User Modeling and User-Adapted Interaction 6(2-3), 87–129 (1996)CrossRefGoogle Scholar
  2. 2.
    Brusilovsky, P., Eklund, J.: A study of user-model based link annotation in educational hypermedia. Journal of Universal Computer Science 4(4), 429–448 (1998)Google Scholar
  3. 3.
    Brusilovsky, P., Pesin, L.: Adaptive navigation support in educational hypermedia: An evaluation of the ISIS-Tutor. Journal of Computing and Information Technology 6(1), 27–38 (1998)Google Scholar
  4. 4.
    Brusilovsky, P., Sosnovsky, S.: Engaging students to work with self-assessment questions: A study of two approaches. In: Proc. of ITiCSE 2005, Monte de Caparica, Portugal, pp. 251–255. ACM Press, New York (2005)CrossRefGoogle Scholar
  5. 5.
    Brusilovsky, P., Sosnovsky, S., Shcherbinina, O.: QuizGuide: Increasing the Educational Value of Individualized Self-Assessment Quizzes with Adaptive Navigation Support. In: Nall, J., Robson, R. (eds.) Proc. of World Conference on E-Learning, E-Learn 2004, Washington, DC, USA, AACE, pp. 1806–1813 (2004)Google Scholar
  6. 6.
    Davidovic, A., Warren, J., Trichina, E.: Learning benefits of structural example-based adaptive tutoring systems. IEEE Transactions on Education 46(2), 241–251 (2003)CrossRefGoogle Scholar
  7. 7.
    De Bra, P., Calvi, L.: AHA! An open Adaptive Hypermedia Architecture. The New Review of Hypermedia and Multimedia 4, 115–139 (1998)CrossRefGoogle Scholar
  8. 8.
    Henze, N., Nejdl, W.: Adaptation in open corpus hypermedia. International Journal of Artificial Intelligence in Education 12(4), 325–350 (2001)Google Scholar
  9. 9.
    Masthoff, J.: Design and evaluation of a navigation agent with a mixed locus of control. In: Cerri, S.A., Gouardéres, G., Paraguaçu, F. (eds.) ITS 2002. LNCS, vol. 2363, pp. 982–991. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  10. 10.
    Naps, T.L., Rößling, G., et al.: Exploring the role of visualization and engagement in computer science education. ACM SIGCSE bulletin 35, 131–152 (2003)CrossRefGoogle Scholar
  11. 11.
    Papanikolaou, K.A., Grigoriadou, M., Kornilakis, H., Magoulas, G.D.: Personalising the interaction in a Web-based Educational Hypermedia System: the case of INSPIRE. User Modeling and User Adapted Interaction 13(3), 213–267 (2003)CrossRefGoogle Scholar
  12. 12.
    Specht, M.: Empirical evaluation of adaptive annotation in hypermedia. In: Ottmann, T., Tomek, I. (eds.) Proc. of ED-MEDIA/ED-TELECOM 1998 - 10th World Conference on Educational Multimedia and Hypermedia, Freiburg, Germany, pp. 1327–1332 (1998)Google Scholar
  13. 13.
    Weber, G., Brusilovsky, P.: ELM-ART: An adaptive versatile system for Web-based instruction. International Journal of Artificial Intelligence in Education 12(4), 351–384 (2001), available online at: Google Scholar
  14. 14.
    Yudelson, M., Brusilovsky, P.: NavEx: Providing Navigation Support for Adaptive Browsing of Annotated Code Examples. In: Looi, C.-K., McCalla, G., Bredeweg, B., Breuker, J. (eds.) Proceedings of AIED 2005. IOS, Amsterdam, pp. 710–717 (2005)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Peter Brusilovsky
    • 1
  • Sergey Sosnovsky
    • 1
  • Michael Yudelson
    • 1
  1. 1.School of Information SciencesUniversity of PittsburghPittsburghUSA

Personalised recommendations