Optimal Line and Arc Detection on Run-Length Representations

  • Daniel Keysers
  • Thomas M. Breuel
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3926)

Abstract

The robust detection of lines and arcs in scanned documents or technical drawings is an important problem in document image understanding. We present a new solution to this problem that works directly on run-length encoded data. The method finds globally optimal solutions to parameterized thick line and arc models. Line thickness is part of the model and directly used during the matching process. Unlike previous approaches, it does not require any thinning or other preprocessing steps, no computation of the line adjacency graphs, and no heuristics. Furthermore, the only search-related parameter that needs to be specified is the desired numerical accuracy of the solution. The method is based on a branch-and-bound approach for the globally optimal detection of these geometric primitives using runs of black pixels in a bi-level image. We present qualitative and quantitative results of the algorithm on images used in the 2003 and 2005 GREC arc segmentation contests.

Keywords

Graphics Recognition Line Drawings Technical Drawings Branch-and-Bound algorithms 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Elliman, D.: Tif2vec, an algorithm for arc segmentation in engineering drawings. In: Blostein, D., Kwon, Y.-B. (eds.) GREC 2001. LNCS, vol. 2390, pp. 350–359. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  2. 2.
    Wenyin, L.: Report of the arc segmentation contest. In: Lladós, J., Kwon, Y.-B. (eds.) GREC 2003. LNCS, vol. 3088, pp. 364–367. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  3. 3.
    Wenyin, L., Zhai, J., Dori, D.: Extended summary of the arc segmentation contest. In: Blostein, D., Kwon, Y.-B. (eds.) GREC 2001. LNCS, vol. 2390, pp. 343–349. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  4. 4.
    Duda, R.O., Hart, P.E.: Use of the Hough transformation to detect lines and curves in pictures. Communications of the ACM 15, 11–15 (1972)CrossRefMATHGoogle Scholar
  5. 5.
    Wenyin, L., Dori, D.: From raster to vectors: Extracting visual information from line drawings. Pattern Analysis and Applications 2, 10–21 (1999)CrossRefMATHGoogle Scholar
  6. 6.
    Dori, D., Wenyin, L.: Sparse pixel vectorization: An algorithm and its performance evaluation. IEEE Trans. Pattern Analysis Machine Intelligence 21, 202–215 (1999)CrossRefGoogle Scholar
  7. 7.
    Dosch, P., Masini, G., Tombre, K.: Improving arc detection in graphics reognition. In: International Conference on Pattern Recongition, Barcelona, Spain, vol. 2, pp. 2243–2246 (2000)Google Scholar
  8. 8.
    Hilaire, X.: RANVEC and the arc segmentation contest. In: Blostein, D., Kwon, Y.-B. (eds.) GREC 2001. LNCS, vol. 2390, pp. 359–364. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  9. 9.
    Breuel, T.M.: Fast recognition using adaptive subdivisions of transformation space. In: Proceedings IEEE Conf. on Computer Vision and Pattern Recognition, pp. 445–451 (1992)Google Scholar
  10. 10.
    Breuel, T.M.: On the use of interval arithmetic in geometric branch-and-bound algorithms. Pattern Recognition Letters 24, 1375–1384 (2003)CrossRefMATHGoogle Scholar
  11. 11.
    Breuel, T.M.: Robust least square baseline finding using a branch and bound algorithm. In: Proceedings of the SPIE - The International Society for Optical Engineering, pp. 20–27 (2002)Google Scholar
  12. 12.
    Hagedoorn, M., Veltkamp, R.C.: Reliable and efficient pattern matching using an affine invariant metric. International Journal of Computer Vision 31, 203–225 (1999)CrossRefGoogle Scholar
  13. 13.
    Huttenlocher, D.P., Klanderman, G.A., Rucklidge, W.J.: Comparing images using the Hausdorff distance. IEEE Transactions on Pattern Analysis and Machine Intelligence 15, 850–863 (1993)CrossRefGoogle Scholar
  14. 14.
    Jurie, F.: Solution of the simultaneous pose and correspondence problem using Gaussian error model. Computer Vision and Image Understanding 73, 357–373 (1999)CrossRefMATHGoogle Scholar
  15. 15.
    Mount, D.M., Netanyahu, N.S., Moigne, J.L.: Efficient algorithms for robust feature matching. Pattern Recognition 32, 17–38 (1999)CrossRefGoogle Scholar
  16. 16.
    Olson, C.F.: Locating geometric primitives by pruning the parameter space. Pattern Recognition 34, 1247–1256 (2001)CrossRefMATHGoogle Scholar
  17. 17.
    Pavlidis, T.: Algorithms for Graphics and Image Processing. W. H. Freeman & Co., New York (1983)MATHGoogle Scholar
  18. 18.
    Forsyth, D.A., Ponce, J.: Computer Vision: A Modern Approach. Prentice Hall, Upper Saddle River (2003)Google Scholar
  19. 19.
    Breuel, T.M.: Finding lines under bounded error. Pattern Recognition 29, 167–178 (1996)CrossRefGoogle Scholar
  20. 20.
    Hickey, T.J., Ju, Q., van Emden, M.H.: Interval arithmetic: From principles to implementation. JACM 48, 1038–1068 (2001)MathSciNetCrossRefMATHGoogle Scholar
  21. 21.
    Jaulin, L., Kieffer, M., Didrit, O., Walter, E.: Applied Interval Analysis. Springer, Berlin (2001)CrossRefMATHGoogle Scholar
  22. 22.
    Breuel, T.M.: Representations and metrics for off-line handwriting segmentation. In: 8th International Workshop on Frontiers in Handwriting Recognition (2002)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Daniel Keysers
    • 1
    • 2
  • Thomas M. Breuel
    • 1
    • 2
  1. 1.Image Understanding and Pattern Recognition Research Group, German Research Center for Artificial Intelligence (DFKI GmbH)Germany
  2. 2.University of KaiserslauternKaiserslauternGermany

Personalised recommendations