Automated Evaluation of Coordination Approaches

  • Tibor Bosse
  • Mark Hoogendoorn
  • Jan Treur
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4038)


How to coordinate the processes in a complex component-based software system is a nontrivial issue. Many different coordination approaches exist, each with its own specific advantages and drawbacks. To support their mutual comparison, this paper proposes a formal methodology to automatically evaluate the performance of coordination approaches. This methodology comprises (1) creation of simulation models of coordination approaches, (2) execution of simulation experiments of these models applied to test examples, and (3) automated evaluation of the models against specified requirements. Moreover, in a specific case study, the methodology is used to evaluate some coordination approaches that originate from various disciplines.


Automate Evaluation Vote Method Specific Case Study Situation Calculus Simulation Trace 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    van der Aalst, W.M.P., ter Hofstede, A.H.M., Kiepuszewski, B., Barros, A.P.: Workflow Patterns. QUT Technical report FIT-TR-2002-02, Queensland University of Technology, Brisbane (2002)Google Scholar
  2. 2.
    Allen, J.F.: Maintaining knowledge about temporal intervals. Communications of the ACM 26, 832–843 (1983)zbMATHCrossRefGoogle Scholar
  3. 3.
    Arbab, F.R.: A Channel-based Coordination Model for Component Composition. Mathematical Structures in Computer Science 14(3), 329–366 (2004)zbMATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Barringer, H., Fisher, M., Gabbay, D., Owens, R., Reynolds, M.: The Imperative Future: Principles of Executable Temporal Logic. John Wiley & Sons, Chichester (1996)Google Scholar
  5. 5.
    Bosse, T., Hoogendoorn, M., Treur, J.: Coordination Approaches for Complex Software Systems. Technical report 06-04ASRAI, Vrije Universiteit Amsterdam (2006),
  6. 6.
    Bosse, T., Jonker, C.M., van der Meij, L., Treur, J.: LEADSTO: a Language and Environment for Analysis of Dynamics by SimulaTiOn. In: Eymann, T., Klügl, F., Lamersdorf, W., Klusch, M., Huhns, M.N. (eds.) MATES 2005. LNCS (LNAI), vol. 3550, pp. 165–178. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  7. 7.
    Bosse, T., Jonker, C.M., van der Meij, L., Sharpanskykh, A., Treur, J.: A Temporal Trace Language for the Formal Analysis of Dynamic Properties. Technical Report, Vrije Universiteit Amsterdam, Department of Artificial Intelligence (2006)Google Scholar
  8. 8.
    Bourne, R., Shoop, K., Jennings, N.: Dynamic evaluation of coordination mechanisms for autonomous agents. In: Brazdil, P., Jorge, A. (eds.) Progress in Artificial Intelligence. LNCS (LNAI), pp. 155–168. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  9. 9.
    Dierks, H.: PLC-automata: A new class of implementable real-time automata. In: Rus, T., Bertrán, M. (eds.) AMAST-ARTS 1997, ARTS 1997, and AMAST-WS 1997. LNCS, vol. 1231, pp. 111–125. Springer, Heidelberg (1997)Google Scholar
  10. 10.
    Forbus, K.D.: Qualitative process theory. Artificial Intelligence 24(1-3), 85–168 (1984)CrossRefGoogle Scholar
  11. 11.
    Franklin, S.: Artificial Minds. MIT Press, Cambridge (1997)Google Scholar
  12. 12.
    Gardelli, L., Viroli, M., Omicini, A.: On the Role of Simulations in Engineering Self-Organizing MAS: the Case of an Intrusion Detection System in TuCSoN. In: Brueckner, S.A., Di Marzo Serugendo, G., Hales, D., Zambonelli, F. (eds.) ESOA 2005. LNCS, vol. 3910, pp. 153–166. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  13. 13.
    Goldblatt, R.: Logics of Time and Computation, 2nd edn. CSLI Lecture Notes, vol. 7 (1992)Google Scholar
  14. 14.
    Jackson, J.V.: Idea for a Mind. SIGGART Newsletter 181, 23–26 (1987)Google Scholar
  15. 15.
    Kowalski, R., Sergot, M.A.: A logic-based calculus of events. New Generation Computing 4, 67–95 (1986)CrossRefGoogle Scholar
  16. 16.
    Lindsay, P.H., Norman, D.A.: Human Information Processing: An Introduction to Psychology. Academic Press Inc., New York (1977)Google Scholar
  17. 17.
    Maes, P.: How to do the right thing. Connection Science 1(3), 291–323 (1989)CrossRefGoogle Scholar
  18. 18.
    Ordeshook, P.: Game theory and political theory: An Introduction. Cambridge University Press, Cambridge (1986)CrossRefGoogle Scholar
  19. 19.
    Pirjanian, P.: Behavior coordination mechanisms – state-of-the-art. Technical Report IRIS-99-375, Institute of Robotics and Intelligent Systems, School of Engineering, University of Southern California (October 1999)Google Scholar
  20. 20.
    Port, R.F., van Gelder, T. (eds.): Mind as Motion: Explorations in the Dynamics of Cognition. MIT Press, Cambridge (1995)Google Scholar
  21. 21.
    Reiter, R.: Knowledge in Action: Logical Foundations for Specifying and Implementing Dynamical Systems. MIT Press, Cambridge (2001)zbMATHGoogle Scholar
  22. 22.
    Selfridge, O.G.: Pandemonium: a paradigm for learning in mechanization of thought processes. In: Proceedings of a Symposium Held at the National Physical Laboratory, London, pp. 513–526 (November 1958)Google Scholar
  23. 23.
    Tyrrell, T.: Computational Mechanisms for Action Selection, PhD thesis, University of Edinburgh (1993)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Tibor Bosse
    • 1
  • Mark Hoogendoorn
    • 1
  • Jan Treur
    • 1
  1. 1.Department of Artificial IntelligenceVrije Universiteit AmsterdamAmsterdamThe Netherlands

Personalised recommendations