Advertisement

Stochastic Reasoning About Channel-Based Component Connectors

  • Christel Baier
  • Verena Wolf
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4038)

Abstract

Constraint automata have been used as an operational model for component connectors that coordinate the cooperation and communication of the components by means of a network of channels. In this paper, we introduce a variant of constraint automata (called continuous-time constraint automata) that allows us to specify time-dependent stochastic assumptions about the channel connections or the component interfaces, such as the arrival rates of communication requests, the average delay of enabled I/O-operations at the channel ends or the stochastic duration of internal computations. This yields the basis for a performance analysis of channel-based coordination mechanisms. We focus on compositional reasoning and discuss several bisimulation relations on continuous-time constraint automata. For this, we adapt notions of strong and weak bisimulation that have been introduced for similar stochastic models and introduce a new notion of weak bisimulation which abstracts away from invisible non-stochastic computations as well as the internal stochastic evolution.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Arbab, F.: Abstract behavior types: A foundation model for components and their composition. In: [15], pp. 33–70 (2003)Google Scholar
  2. 2.
    Arbab, F.: Reo: A channel-based coordination model for component composition. Mathematical Structures in Computer Science 14(3), 1–38 (2004)CrossRefMathSciNetGoogle Scholar
  3. 3.
    Arbab, F., Baier, C., de Boer, F., Rutten, J.: Models and temporal logics for timed component connectors. In: Proc. SEFM 2004. IEEE CS Press, Los Alamitos (2004)Google Scholar
  4. 4.
    Arbab, F., Baier, C., Rutten, J.J.M.M., Sirjani, M.: Modeling component connectors in reo by constraint automata. Science of Computer Programming, special issue on Foundations of Coordination Languages and Software Architectures (to appear, 2005)Google Scholar
  5. 5.
    Arbab, F., Rutten, J.J.M.M.: A coinductive calculus of component connectors. In: Wirsing, M., Pattinson, D., Hennicker, R. (eds.) WADT 2003. LNCS, vol. 2755, pp. 34–55. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  6. 6.
    Baier, C.: Probabilistic models for reo connector circuits. Journal of Universal Computer Science 11(10), 1718–1748 (2005)Google Scholar
  7. 7.
    Baier, C., Haverkort, B., Hermanns, H., Katoen, J.-P.: Efficient computation of time-bounded reachability probabilities in uniform continuous-time markov decision processes. In: Jensen, K., Podelski, A. (eds.) TACAS 2004. LNCS, vol. 2988, pp. 61–76. Springer, Heidelberg (2004) (Full version to appear in Theoretical Computer Science)CrossRefGoogle Scholar
  8. 8.
    Baier, C., Hermanns, H., Katoen, J.-P., Wolf, V.: Comparative branching time semantics for Markov chains. In: Amadio, R.M., Lugiez, D. (eds.) CONCUR 2003. LNCS, vol. 2761, pp. 492–507. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  9. 9.
    Bernardo, M., Gorrieri, R.: Extended Markovian process algebra. In: Sassone, V., Montanari, U. (eds.) CONCUR 1996. LNCS, vol. 1119, pp. 315–330. Springer, Heidelberg (1996)Google Scholar
  10. 10.
    Bohnenkamp, H., Hermanns, H., Katoen, J.-P., Klaren, R.: The modest modeling tool and its implementation. In: Kemper, P., Sanders, W.H. (eds.) TOOLS 2003. LNCS, vol. 2794, pp. 116–133. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  11. 11.
    Bravetti, M.: Revisiting interactive Markov chains. In: Proc. Models for Time-Critical Systems. Electr. Notes Theor. Comput. Sci., vol. 68(5) (2003)Google Scholar
  12. 12.
    Buchholz, P.: Exact and ordinary lumpability in finite markov chains. Journal of Applied Probability 31, 59–75 (1994)zbMATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    Ciancarini, P.: Coordination models and languages as software integrators. ACM Comput. Surv. 28(2), 300–302 (1996)CrossRefGoogle Scholar
  14. 14.
    Clarke, D., Costa, D., Arbab, F.: Modelling coordination in biological systems. In: Margaria, T., Steffen, B. (eds.) ISoLA 2004. LNCS, vol. 4313, pp. 9–25. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  15. 15.
    de Boer, F.S., Bonsangue, M.M., Graf, S., de Roever, W.-P. (eds.): FMCO 2002. LNCS, vol. 2852. Springer, Heidelberg (2003)zbMATHGoogle Scholar
  16. 16.
    Di Pierro, A., Hankin, C., Wiklicky, H.: Continuous-time probabilistic klaim. Electr. Notes Theor. Comput. Sci. 128(5), 27–38 (2005)CrossRefGoogle Scholar
  17. 17.
    Diakov, N., Arbab, F.: Compositional construction of web services using Reo. In: Proc. International Workshop on Web Services: Modeling, Architecture and Infrastructure (ICEIS 2004), Porto, Portugal, April 13-14 (2004)Google Scholar
  18. 18.
    Feinberg, E.: Continuous time discounted jump markov decision processes: A discrete-event approach. Math. Oper. Res. 29(3), 492–524 (2004)zbMATHCrossRefMathSciNetGoogle Scholar
  19. 19.
    Gelernter, D., Carriero, N.: Coordination languages and their significance. Commun. ACM 35(2), 97–107 (1992)CrossRefGoogle Scholar
  20. 20.
    Hermanns, H.: Interactive Markov Chains. LNCS, vol. 2428. Springer, Heidelberg (2002)zbMATHCrossRefGoogle Scholar
  21. 21.
    Hillston, J.: A compositional approach to performance modelling. Cambridge University Press, Cambridge (1996)CrossRefGoogle Scholar
  22. 22.
    Kemeny, J.G., Snell, J.L., Knapp, A.W.: Denumerable Markov Chains. D. Van Nostrand Co., Princeton (1966)zbMATHGoogle Scholar
  23. 23.
    Milner, R.: Communication and Concurrency. Prentice Hall International Series in Computer Science. Prentice Hall, Englewood Cliffs (1989)zbMATHGoogle Scholar
  24. 24.
    Nierstrasz, O., Gibbs, S., Tsichritzis, D.: Component-oriented software development. Commun. ACM 35(9), 160–165 (1992)CrossRefGoogle Scholar
  25. 25.
    Omicini, A., Zambonelli, F., Klusch, M., Tolksdorf, R. (eds.): Coordination of Internet Agents: Models, Technologies, and Applications. Springer, Heidelberg (2001)zbMATHGoogle Scholar
  26. 26.
    Panangaden, P.: Measure and probability for concurrency theorists. Theoretical Computer Science 253(2), 287–309 (2001)zbMATHCrossRefMathSciNetGoogle Scholar
  27. 27.
    Priami, C.: Stochastic pi-calculus. Comput. J. 38(7), 578–589 (1995)CrossRefGoogle Scholar
  28. 28.
    Puterman, M.L.: Markov Decision Processes—Discrete Stochastic Dynamic Programming. John Wiley & Sons, Inc., New York (1994)zbMATHGoogle Scholar
  29. 29.
    Rutten, J.J.M.M.: Component connectors. In: [27], ch. 5, pp. 73–87. Oxford University Press, Oxford (2004)Google Scholar
  30. 30.
    Wolf, V., Baier, C., Majster-Cederbaum, M.: Trace semantics for stochastic systems with nondeterminism. In: Proc. QAPL (to appear, 2006)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Christel Baier
    • 1
  • Verena Wolf
    • 2
  1. 1.Universität BonnGermany
  2. 2.Universität MannheimGermany

Personalised recommendations