Object-Relational Representation of a Conceptual Model for Temporal Data Warehouses

  • E. Malinowski
  • E. Zimányi
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4001)


Temporal Data Warehouses (TDWs) allow to manage time-varying multidimensional data by joining the research of Temporal Databases and Data Warehouses. TDWs raise different issues such as temporal aggregations, multidimensional schema versioning, etc. However, very little attention from the research community has been drawn to conceptual modeling for TDWs and its subsequent logical representation. In this paper, we present a mapping transforming our conceptual model for TDW design into the conventional ER and an object-relational models. For the latter, we show some examples using the SQL:2003 standard. We include the mapping for time-varying levels, hierarchies, and measures. We also discuss the inconveniences of a pure relational representation.


Temporal Type Valid Time Fact Relationship Temporal Database Temporal Support 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Bliujute, R., Slatenis, S., Slivinskas, G., Jensen, C.: Systematic change mangement in dimensional data warehousing. Technical report, Time Center, TR-23 (1998)Google Scholar
  2. 2.
    Eder, J., Koncilia, C., Morzy, T.: The COMET metamodel for temporal data warehouses. In: Pidduck, A.B., Mylopoulos, J., Woo, C.C., Ozsu, M.T. (eds.) CAiSE 2002. LNCS, vol. 2348, pp. 83–99. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  3. 3.
    Elmasri, R., Navathe, S.: Fundamentals of Database Systems, 4th edn. Addison-Wesley, Reading (2003)Google Scholar
  4. 4.
    Gregersen, H., Mark, L., Jensen, C.: Mapping temporal ER diagrams to relational schemas. Technical report, Time Center, TR-39 (1998)Google Scholar
  5. 5.
    Jensen, C., Snodgrass, R.: Temporally enhanced database design. In: Papazoglou, M., Spaccapietra, S., Tari, Z. (eds.) Advances in Object-Oriented Data Modeling, pp. 163–193. MIT Press, Cambridge (2000)Google Scholar
  6. 6.
    Malinowski, E., Zimányi, E.: A conceptual solution for representing time in data warehouse dimensions. In: Proc. of the 3rd Asia-Pacific Conf. on Conceptual Modelling, pp. 45–54 (2006)Google Scholar
  7. 7.
    Malinowski, E., Zimányi, E.: Hierarchies in a multidimensional model: from conceptual modeling to logical representation. Data & Knowledge Engineering (to appear, 2006)Google Scholar
  8. 8.
    Malinowski, E., Zimányi, E.: Inclusion of time-varying measures in temporal data warehouses. In: Proc. of the 8th Int. Conf. on Enterprise Information Systems (to appear, 2006)Google Scholar
  9. 9.
    Martín, C., Abelló, A.: A temporal study of data sources to load a corporate data warehouse. In: Kambayashi, Y., Mohania, M., Wöß, W. (eds.) DaWaK 2003. LNCS, vol. 2737, pp. 109–118. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  10. 10.
    Melton, J.: Advanced SQL: 1999. Understanding Object-Relational and Other Advanced Features. Morgan Kaufman Publisher, San Francisco (2003)Google Scholar
  11. 11.
    Mendelzon, A., Vaisman, A.: Temporal queries in OLAP. In: Proc. of the 26th Very Large Database Conference, pp. 243–253 (2000)Google Scholar
  12. 12.
    Pedersen, T., Jensen, C., Dyreson, C.: A foundation for capturing and querying complex multidimensional data. Information Systems 26(5), 383–423 (2001)zbMATHCrossRefGoogle Scholar
  13. 13.
    Wang, X., Bettini, C., Brodsky, A., Jajodia, S.: Logical design for temporal databases with multiple granularities. ACM Transactions on Database Systems 22(2), 115–170 (1997)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • E. Malinowski
    • 1
  • E. Zimányi
    • 1
  1. 1.Department of Informatics & NetworksUniversité Libre de Bruxelles 

Personalised recommendations