The Lookahead Principle for Preference Elicitation: Experimental Results

  • Paolo Viappiani
  • Boi Faltings
  • Pearl Pu
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4027)


Preference-based search is the problem of finding an item that matches best with a user’s preferences. User studies show that example-based tools for preference-based search can achieve significantly higher accuracy when they are complemented with suggestions chosen to inform users about the available choices.

We discuss the problem of eliciting preferences in example-based tools and present the lookahead principle for generating suggestions. We compare two different implementations of this principle and we analyze logs of real user interactions to evaluate them.


Dominance Relation Preference Model Pareto Optimality Skyline Query Preference Elicitation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Balke, W.-T., Güntzer, U.: Multi-objective query processing for database systems. In: Nascimento, M.A., Özsu, M.T., Kossmann, D., Miller, R.J., Blakeley, J.A., Schiefer, K.B. (eds.) VLDB, pp. 936–947. Morgan Kaufmann, San Francisco (2004)CrossRefGoogle Scholar
  2. 2.
    Buckles, B.P., Petry, F.E.: Fuzzy databases in the new era. In: SAC, pp. 497–502 (1995)Google Scholar
  3. 3.
    Equity, M.S.D.W.: Transportation e-commerce and the task of fulfilment (2000)Google Scholar
  4. 4.
    Fagin, R.: Fuzzy queries in multimedia database systems. In: PODS 1998: Proceedings of the seventeenth ACM SIGACT-SIGMOD-SIGART symposium on Principles of database systems, pp. 1–10. ACM Press, New York (1998)CrossRefGoogle Scholar
  5. 5.
    Hwanjo Yu, S.-w.H., Chang, K.C.-C.: Rankfp: A framework for supporting rank formulation and processing. In: ICDE 2005, pp. 514–515 (2005)Google Scholar
  6. 6.
    Keeney, R.L., Raiffa, H.: Decisions with Multiple Objectives: Preferences and Value Tradeoffs. John Wiley and Sons, New York (1976)Google Scholar
  7. 7.
    Kiesling, W.: Foundations of preferences in database systems. In: VLDB 2002, pp. 311–322 (2003)Google Scholar
  8. 8.
    Kießling, W., Köstler, G.: Preference sql - design, implementation, experiences. In: VLDB, pp. 990–1001 (2002)Google Scholar
  9. 9.
    Linden, G., Hanks, S., Lesh, N.: Interactive assessment of user preference models: The automated travel assistant. In: Proceedings, User Modeling 1997 (1997)Google Scholar
  10. 10.
    McNee, S.M., Lam, S.K., Konstan, J.A., Riedl, J.: Interfaces for eliciting new user preferences in recommender systems. In: Brusilovsky, P., Corbett, A.T., de Rosis, F. (eds.) UM 2003. LNCS, vol. 2702, pp. 178–187. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  11. 11.
    Payne, J., Bettman, J., Johnson, E.: The Adaptive Decision Maker. Cambridge University Press, Cambridge (1993)Google Scholar
  12. 12.
    Pu, P., Faltings, B.: Enriching buyers experiences: The smartclient approach. In: SIGCHI conference on Human factors in computing systems, pp. 289–296. ACM Press, New York (2000)CrossRefGoogle Scholar
  13. 13.
    Pu, P., Faltings, B.: Decision tradeoff using example-critiquing and constraint programming. Constraints: An International Journal 9(4) (2004)Google Scholar
  14. 14.
    Pu, P., Faltings, B., Torrens, M.: Effective interaction principles for online product search environments. In: Proceedings of the 3rd ACM/IEEE International Conference on Web Intelligence. IEEE Press, Los Alamitos (2004)Google Scholar
  15. 15.
    Pu, P., Kumar, P.: Evaluating example-based search tools. In: ACM Conference on Electronic Commerce, EC 2004 (2004)Google Scholar
  16. 16.
    Pu, P., Viappiani, P., Faltings, B.: Increasing user decision accuracy using suggestions. In: CHI (April 2006) (to appear)Google Scholar
  17. 17.
    Shimazu, H.: Expertclerk: Navigating shoppers buying process with the combination of asking and proposing. In: Proceedings of the 17 International Joint Conference on Artificial Intelligence (IJCAI 2001), vol. 2, pp. 1443–1448 (2001)Google Scholar
  18. 18.
    Smyth, B., McGinty, L.: The power of suggestion. In: IJCAI, pp. 127–132 (2003)Google Scholar
  19. 19.
    Tversky, A.: Judgement under uncertainity: Heuristics and biases (1974)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Paolo Viappiani
    • 1
  • Boi Faltings
    • 1
  • Pearl Pu
    • 2
  1. 1.Artificial Intelligence Laboratory (LIA)Switzerland
  2. 2.Human Computer Interaction Group(HCI)Ecole Polytechnique Fédérale de Lausanne (EPFL)LausanneSwitzerland

Personalised recommendations