Machine Learning in a Quantum World

  • Esma Aïmeur
  • Gilles Brassard
  • Sébastien Gambs
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4013)


Quantum Information Processing (QIP) performs wonders in a world that obeys the laws of quantum mechanics, whereas Machine Learning (ML) is generally assumed to be done in a classical world. We initiate an investigation of the encounter of ML with QIP by defining and studying novel learning tasks that correspond to Machine Learning in a world in which the information is fundamentally quantum mechanical. We shall see that this paradigm shift has a profound impact on the learning process and that our classical intuition is often challenged.


Quantum State Training Dataset Quantum Information Processing Physical Review Letter Quantum World 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Angluin, D.: Queries and concept learning. Machine Learning 2, 319–342 (1988)Google Scholar
  2. 2.
    Barenco, A., Berthiaume, A., Deutsch, D., Ekert, A., Jozsa, R., Macchiavello, C.: Stabilisation of quantum computations by symmetrisation. SIAM Journal of Computing 26(5), 1541–1557 (1997)zbMATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Bennett, C.H., Brassard, G.: Quantum cryptography: Public key distribution and coin tossing. In: Proceedings of IEEE International Conference on Computers, Systems and Signal Processing, Bangalore, pp. 175–179 (1984)Google Scholar
  4. 4.
    Buhrman, H., Cleve, R., Watrous, J., de Wolf, R.: Quantum fingerprinting. Physical Reviews Letters 87(16), article 167902 (2001)CrossRefGoogle Scholar
  5. 5.
    Chiribella, G., Mauro D’Ariano, G., Perinotti, P., Sacchi, M.: Covariant quantum measurements which maximize the likelihood. Physical Reviews A 70, article 61205 (2004)Google Scholar
  6. 6.
    Ezhov, A.A., Berman, G.P.: Introduction to Quantum Neural Technologies. Rinton Press (2003)Google Scholar
  7. 7.
    Freund, Y., Shapire, R.: A decision-theoretic generalization of on-line learning and an application to boosting. Journal of Computer and System Sciences 55(1), 119–139 (1997)zbMATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Grover, L.K.: Quantum mechanics helps in searching for a needle in a haystack. Physical Review Letters 79, 325–328 (1997)CrossRefGoogle Scholar
  9. 9.
    Hayashi, A., Hashimoto, T., Horibe, M.: Reexamination of optimal quantum state estimation of pure states. Physical Reviews A 72, article 32325 (2005)CrossRefGoogle Scholar
  10. 10.
    Helstrom, C.W.: Quantum Detection and Estimation Theory. Academic Press, London (1976)Google Scholar
  11. 11.
    Herzog, U., Bergou, J.A.: Optimal unambiguous discrimination of two mixed quantum states. Physical Reviews A 71, article 50301 (2005)CrossRefMathSciNetGoogle Scholar
  12. 12.
    Holevo, A.S.: Bounds for the quantity of information transmitted by a quantum mechanical channel. Problems of Information Transmissions 9, 177–183 (1973)MathSciNetGoogle Scholar
  13. 13.
    Horn, D., Gottlieb, A.: The method of quantum clustering. In: Proceedings of the Conference Neural Information Processing Systems (NIPS), pp. 769–776 (2001)Google Scholar
  14. 14.
    Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2000)zbMATHGoogle Scholar
  15. 15.
    Peres, A., Wootters, W.K.: Optimal detection of quantum information. Physical Reviews Letters 66(9), 1119–1122 (1991)CrossRefGoogle Scholar
  16. 16.
    Quinlan, J.R.: Induction of decision trees. Machine Learning 1, 81–106 (1986)Google Scholar
  17. 17.
    Sasaki, M., Carlini, A.: Quantum learning and universal quantum matching machine. Physical Reviews A 66(2), article 22303 (2002)CrossRefMathSciNetGoogle Scholar
  18. 18.
    Sen, P.: Random measurement bases, quantum state distinction and applications to the hidden subgroup problem. In: Proceedings of 21st Annual IEEE Conference on Computational Complexity (CCC) (to appear, 2006)Google Scholar
  19. 19.
    Servedio, R.: Separating quantum and classical learning. In: Orejas, F., Spirakis, P.G., van Leeuwen, J. (eds.) ICALP 2001. LNCS, vol. 2076, Springer, Heidelberg (2001)Google Scholar
  20. 20.
    Servedio, R., Gortler, A.: Equivalences and separations between quantum and classical learnability. SIAM Journal of Computing 33(5), 1067–1092 (2004)zbMATHCrossRefMathSciNetGoogle Scholar
  21. 21.
    Shor, P.W.: Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer. SIAM Journal of Computing 26, 1484–1509 (1997)zbMATHCrossRefMathSciNetGoogle Scholar
  22. 22.
    Valiant, L.G.: A theory of the learnable. Communications of the ACM 27, 1134–1142 (1984)zbMATHCrossRefGoogle Scholar
  23. 23.
    Wootters, W.K., Zurek, W.C.: A single quantum cannot be cloned. Nature 66, 802–803 (1982)CrossRefGoogle Scholar
  24. 24.
    Ziman, M., Plesch, M., Bužek, V., Štelmachovič, P.: Process reconstruction: From unphysical to physical maps via maximum likelihood. Physical Reviews A 71, article 22106 (2005)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Esma Aïmeur
    • 1
  • Gilles Brassard
    • 1
  • Sébastien Gambs
    • 1
  1. 1.Département d’informatique et de recherche opérationnelleUniversité de MontréalMontréal (Québec)Canada

Personalised recommendations