Probabilistic Melodic Harmonization

  • Jean-François Paiement
  • Douglas Eck
  • Samy Bengio
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4013)


We propose a representation for musical chords that allows us to include domain knowledge in probabilistic models. We then introduce a graphical model for harmonization of melodies that considers every structural components in chord notation. We show empirically that root notes progressions exhibit global dependencies that can be better captured with a tree structure related to the meter than with a simple dynamical HMM that concentrates on local dependencies. However, a local model seems to be sufficient for generating proper harmonizations when root notes progressions are provided. The trained probabilistic models can be sampled to generate very interesting chord progressions given other polyphonic music components such as melody or root note progressions.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bengio, Y., Simard, P., Frasconi, P.: Learning long-term dependencies with gradient descent is difficult. IEEE Transactions on Neural Networks 5, 157–166 (1994)CrossRefGoogle Scholar
  2. 2.
    Cemgil, A.T.: Bayesian Music Transcription. PhD thesis, Radboud University of Nijmegen (2004)Google Scholar
  3. 3.
    Eck, D., Schmidhuber, J.: Finding temporal structure in music: Blues improvisation with LSTM recurrent networks. In: Bourlard, H. (ed.) Neural Networks for Signal Processing XII, Proc. 2002 IEEE Workshop, pp. 747–756. IEEE, New York (2002)CrossRefGoogle Scholar
  4. 4.
    Raphael, C., Stoddard, J.: Harmonic analysis with probabilistic graphical models. In: Proceedings of ISMIR 2003 (2003)Google Scholar
  5. 5.
    Lavrenko, V., Pickens, J.: Polyphonic music modeling with random fields. In: Proceedings of ACM Multimedia, Berkeley, CA (2003)Google Scholar
  6. 6.
    Sher, C. (ed.): The New Real Book, vol. 1. Sher Music Co. (1988)Google Scholar
  7. 7.
    Levine, M.: The Jazz Piano Book. Sher Music Co./Advance Music (1990)Google Scholar
  8. 8.
    Allan, M., Williams, C.K.I.: Harmonising chorales by probabilistic inference. In: Advances in Neural Information Processing Systems, vol. 17 (2004)Google Scholar
  9. 9.
    Lauritzen, S.L.: Graphical Models. Oxford University Press, Oxford (1996)Google Scholar
  10. 10.
    Dempster, A.P., Laird, N.M., Rubin, D.B.: Maximum likelihood from incomplete data via the em algorithm. Journal of the Royal Statistical Society 39, 1–38 (1977)zbMATHMathSciNetGoogle Scholar
  11. 11.
    Cooper, G., Meyer, L.B.: The Rhythmic Structure of Music. The Univ. of Chicago Press (1960)Google Scholar
  12. 12.
    Paiement, J.F., Eck, D., Bengio, S., Barber, D.: A graphical model for chord progressions embedded in a psychoacoustic space. In: Proceedings of the 22nd International Conference on Machine Learning (2005)Google Scholar
  13. 13.
    Paiement, J.F., Eck, D., Bengio, S.: A probabilistic model for chord progressions. In: Proceedings of the 6th International Conference on Music Information Retrieval (2005)Google Scholar
  14. 14.
    Hastie, T., Tibshirani, R., Friedman, J.: The Elements of Statistical Learning. Springer series in statistics. Springer, Heidelberg (2001)zbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Jean-François Paiement
    • 1
  • Douglas Eck
    • 2
  • Samy Bengio
    • 1
  1. 1.IDIAP Research InstituteMartignySwitzerland
  2. 2.Département d’Informatique et de recherche opérationnelleUniversité de MontréalMontréalCanada

Personalised recommendations