Document Space Adapted Ontology: Application in Query Enrichment

  • Stein L. Tomassen
  • Jon Atle Gulla
  • Darijus Strasunskas
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3999)


Retrieval of correct and precise information at the right time is essential in knowledge intensive tasks requiring quick decision-making. In this paper, we propose a method for utilizing ontologies to enhance the quality of information retrieval (IR) by query enrichment. We explain how a retrieval system can be tuned by adapting ontologies to provide both an in-depth understanding of the user’s needs as well as an easy integration with standard vector-space retrieval systems. The ontology concepts are adapted to the domain terminology by computing a feature vector for each concept. The feature vector is used to enrich a provided query. The ontology and the whole retrieval system are under development as part of a Semantic Web standardization project for the Norwegian oil and gas industry.


Feature Vector Information Retrieval Document Collection Query Term Query Expansion 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Aas, K., Eikvil, L.: Text categorisation: a survey. Technical report, no. 941. Norwegian Computing Center, Oslo, 37 p. (1999)Google Scholar
  2. 2.
    Grootjen, F.A., van der Weide, T.P.: Conceptual query expansion. Data & Knowledge Engineering 56, 174–193 (2006)CrossRefGoogle Scholar
  3. 3.
    Baeza-Yates, R., Ribeiro-Neto, B.: Modern information retrieval. ACM Press, New York (1999)Google Scholar
  4. 4.
    Braga, R.M.M., Werner, C.M.L., Mattoso, M.: Using Ontologies for Domain Information Retrieval. In: Proceedings of the 11th International Workshop on Database and Expert Systems Applications, pp. 836–840. IEEE Computer Society Press, Los Alamitos (2000)CrossRefGoogle Scholar
  5. 5.
    Rocha, C., Schwabe, D., de Aragao, M.P.: A hybrid approach for searching in the semantic web. In: Proceeding of WWW 2004, pp. 374–383. ACM Press, New York (2004)Google Scholar
  6. 6.
    Ciorăscu, C., Ciorăscu, I., Stoffel, K.: knOWLer - Ontological Support for Information Retrieval Systems. In: Proceedings of Sigir 2003 Conference, Workshop on Semantic Web, Toronto, Canada (2003)Google Scholar
  7. 7.
    Borghoff, U.M., Pareschi, R.: Information Technology for Knowledge Management. Journal of Universal Computer Science 3, 835–842 (1997)zbMATHGoogle Scholar
  8. 8.
    Desmontils, E., Jacquin, C.: Indexing a Web Site with a Terminology Oriented Ontology. In: Cruz, I.F., Decker, S., Euzenat, J., McGuinness, D.L. (eds.) The Emerging Semantic Web, pp. 181–198. IOS Press, Amsterdam (2002)Google Scholar
  9. 9.
    Gulla, J.A., Auran, P.G., Risvik, K.M.: Linguistic Techniques in Large-Scale Search Engines. Fast Search & Transfer, 15 p. (2002) Google Scholar
  10. 10.
    Mitchell, T.M.: Machine learning. McGraw-Hill, New York (1997)Google Scholar
  11. 11.
    Spink, A., Wolfram, D., Jansen, M.B.J., Saracevic, T.: Searching the Web: the public and their queries. J. Am. Soc. Inf. Sci. Technol. 52, 226–234 (2001)CrossRefGoogle Scholar
  12. 12.
    Motta, E., Shum, S.B., Domingue, J.: Case Studies in Ontology-Driven Document Enrichment: Principles, Tools and Applications. International Journal of Human-Computer Studies 6, 1071–1109 (2000)CrossRefGoogle Scholar
  13. 13.
    Popov, B., Kiryakov, A., Kirilov, A., Manov, D., Ognyanoff, D., Goranov, M.: KIM – Semantic Annotation Platform. In: Fensel, D., Sycara, K.P., Mylopoulos, J. (eds.) ISWC 2003. LNCS, vol. 2870, pp. 834–849. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  14. 14.
    Sandsmark, N., Mehta, S.: Integrated Information Platform for Reservoir and Subsea Production Systems, 9 p. (2004)Google Scholar
  15. 15.
    Shah, U., Finin, T., Joshi, A., Cost, R.S., Mayfield, J.: Information Retrieval On The Semantic Web. In: Proceedings of Conference on Information and Knowledge Management, pp. 461–468. ACM Press, McLean (2002)Google Scholar
  16. 16.
    Sullivan, D.: Death of a Meta Tag. Search Engine Watch (2002)Google Scholar
  17. 17.
    Song, J.-F., Zhang, W.-M., Xiao, W., Li, G.-H., Xu, Z.-N.: Ontology-Based Information Retrieval Model for the Semantic Web. In: Proceedings of EEE 2005, pp. 152–155. IEEE Computer Society Press, Los Alamitos (2005)Google Scholar
  18. 18.
    Nagypál, G.: Improving Information Retrieval Effectiveness by Using Domain Knowledge Stored in Ontologies. In: Meersman, R., Tari, Z., Herrero, P. (eds.) OTM-WS 2005. LNCS, vol. 3762, pp. 780–789. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  19. 19.
    Kiryakov, A., Popov, B., Terziev, I., Manov, D., Ognyanoff, D.: Semantic Annotation, Indexing, and Retrieval. Journal of Web Semantics 2(1) (2005)Google Scholar
  20. 20.
    Vallet, D., Fernández, M., Castells, P.: An Ontology-Based Information Retrieval Model. In: Gómez-Pérez, A., Euzenat, J. (eds.) ESWC 2005. LNCS, vol. 3532, pp. 455–470. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  21. 21.
    Chenggang, W., Wenpin, J., Qijia, T., et al.: An information retrieval server based on ontology and multiagent. Journal of computer research & development 38(6), 641–647 (2001)Google Scholar
  22. 22.
    DNV: Tyrihans Terminology for Subsea Equipment and Subsea Production Data. DNV, 60 p. (2005) Google Scholar
  23. 23.
    Fensel, D., Harmelen, F.v., Klein, M., Akkermans, H., Broekstra, J., Fluit, C., Meer, J.v.d., Schnurr, H.-P., Studer, R., Hughes, J., Krohn, U., Davies, J., Engels, R., Bremdal, B., Ygge, F., Lau, T., Novotny, B., Reimer, U., Horrocks, I.: On-To-Knowledge: Ontology-based Tools for Knowledge Management. In: Fensel, D., Harmelen, F. (eds.) Proceedings of the eBusiness and eWork 2000 (EMMSEC 2000) Conference, Madrid, Spain (2000)Google Scholar
  24. 24.
    Qiu, Y., Frei, H.-P.: Concept based query expansion. In: Proceedings of the 16th annual international ACM SIGIR conference on Research and development in information retrieval, pp. 160–169. ACM Press, Pittsburgh (1993)Google Scholar
  25. 25.
    Paralic, J., Kostial, I.: Ontology-based Information Retrieval. Information and Intelligent Systems, 23–28 (2003)Google Scholar
  26. 26.
    Chang, Y., Ounis, I., Kim, M.: Query reformulation using automatically generated query concepts from a document space. Information Processing and Management 42, 453–468 (2006)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Stein L. Tomassen
    • 1
  • Jon Atle Gulla
    • 1
  • Darijus Strasunskas
    • 1
  1. 1.Department of Computer and Information ScienceNorwegian University of Technology and ScienceTrondheimNorway

Personalised recommendations