Updating Directed Minimum Cost Spanning Trees

  • Gerasimos G. Pollatos
  • Orestis A. Telelis
  • Vassilis Zissimopoulos
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4007)

Abstract

We consider the problem of updating a directed minimum cost spanning tree (DMST), when edges are deleted from or inserted to a weighted directed graph. This problem apart from being a classic for directed graphs, is to the best of our knowledge a wide open aspect for the field of dynamic graph algorithms. Our contributions include results on the hardness of updates, a dynamic algorithm for updating a DMST, and detailed experimental analysis of the proposed algorithm exhibiting a speedup factor of at least 2 in comparison with the static practice.

Keywords

branchings dynamic graph algorithms data structures 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Edmonds, J.: Optimum branchings. Journal of Research of the National Bureau for Standards 69B, 125–130 (1967)MathSciNetGoogle Scholar
  2. 2.
    Kang, I., Poovendran, R.: Maximizing network lifetime of broadcasting over wireless stationary adhoc networks. Mobile Networks 11 (to appear, 2006)Google Scholar
  3. 3.
    Li, N., Hou, J.: Topology Control in Heterogeneous Wireless Networks: Problems and Solutions. In: Proceedings of the 23rd IEEE INFOCOM (2004)Google Scholar
  4. 4.
    Li, Z., Hauck, S.: Configuration compression for virtex fpgas. In: Proceedings of the 9th IEEE Symposium on Field-Programmable Custom Computing Machines, FCCM 2001, pp. 147–159 (2001)Google Scholar
  5. 5.
    He, L., Mitra, T., Wong, W.: Configuration bitstream compression for dynamically reconfigurable FPGAs. In: Proceedings of the 2004 International Conference on Computer-Aided Design, ICCAD 2004, pp. 766–773 (2004)Google Scholar
  6. 6.
    Bock, F.: An algorithm to construct a minimum spanning tree in a directed network. In: Developments in Operations Research. Gordon and Breach, pp. 29–44 (1971)Google Scholar
  7. 7.
    Chu, Y.J., Liu, T.H.: On the shortest arborescence of a directed graph. Scientia Sinica 14, 1396–1400 (1965)MathSciNetMATHGoogle Scholar
  8. 8.
    Tarjan, R.E.: Finding optimum branchings. Networks 7, 25–35 (1977)CrossRefMathSciNetMATHGoogle Scholar
  9. 9.
    Gabow, H.N., Galil, Z., Spencer, T.H., Tarjan, R.E.: Efficient algorithms for finding minimum spanning trees in undirected and directed graphs. Combinatorica 6, 109–122 (1986)CrossRefMathSciNetMATHGoogle Scholar
  10. 10.
    Mendelson, R., Tarjan, R.E., Thorup, M., Zwick, U.: Melding Priority Queues. In: Hagerup, T., Katajainen, J. (eds.) SWAT 2004. LNCS, vol. 3111, pp. 223–235. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  11. 11.
    Eppstein, D., Galil, Z., Italiano, G.F.: 8: Dynamic graph algorithms. In: Algorithms and Theory of Computation Handbook, CRC Press, Boca Raton (1999)Google Scholar
  12. 12.
    Holm, J., de Lichtenberg, K., Thorup, M.: Poly-logarithmic deterministic fully-dynamic algorithms for connectivity, minimum spanning tree, 2-edge, and biconnectivity. Journal of the ACM 48, 723–760 (2001)CrossRefMathSciNetMATHGoogle Scholar
  13. 13.
    Alpern, B., Hoover, R., Rosen, B.K., Sweeney, P.F., Zadeck, F.K.: Incremental evaluation of computational circuits. In: Proceedings of the 1st ACM-SIAM Symposium on Discrete Algorithms, SODA 1990, pp. 32–42 (1990)Google Scholar
  14. 14.
    Ramalingam, G., Reps, T.: On the complexity of dynamic graph problems. Theoretical Computer Science 158(1&2), 233–277 (1996)CrossRefMathSciNetMATHGoogle Scholar
  15. 15.
    Frigioni, D., Marchetti-Spaccamela, A., Nanni, U.: Fully dynamic algorithms for maintaining shortest paths trees. Journal of Algorithms 34, 251–281 (2000)CrossRefMathSciNetMATHGoogle Scholar
  16. 16.
    Pearce, D.J., Kelly, P.H.J.: A Dynamic Algorithm for Topologically Sorting Directed Acyclic Graphs. In: Ribeiro, C.C., Martins, S.L. (eds.) WEA 2004. LNCS, vol. 3059, pp. 383–398. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  17. 17.
    Spira, P.M., Pan, A.: On Finding and Updating Spanning Trees and Shortest Paths. SIAM Journal on Computing 4(3), 364–380 (1975)CrossRefMathSciNetGoogle Scholar
  18. 18.
    Rabin, M.O.: Proving simultaneous positivity of linear forms. Journal of Computers and Systems Sciences 6, 639–650 (1972)CrossRefMathSciNetMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Gerasimos G. Pollatos
    • 1
  • Orestis A. Telelis
    • 1
  • Vassilis Zissimopoulos
    • 1
  1. 1.Dept. of Informatics and TelecommunicationsUniversity of AthensHellasGreece

Personalised recommendations