Information-Theoretic Conditions for Two-Party Secure Function Evaluation

  • Claude Crépeau
  • George Savvides
  • Christian Schaffner
  • Jürg Wullschleger
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4004)

Abstract

The standard security definition of unconditional secure function evaluation, which is based on the ideal/real model paradigm, has the disadvantage of being overly complicated to work with in practice. On the other hand, simpler ad-hoc definitions tailored to special scenarios have often been flawed. Motivated by this unsatisfactory situation, we give an information-theoretic security definition of secure function evaluation which is very simple yet provably equivalent to the standard, simulation-based definitions.

Keywords

Ideal Model Admissible Pair Ideal Functionality Oblivious Transfer Model Paradigm 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Backes, M., Pfitzmann, B., Waidner, M.: A universally composable cryptographic library. Cryptology ePrint Archive, Report 2003/015 (2003)Google Scholar
  2. 2.
    Beaver, D.: Foundations of secure interactive computing. In: Feigenbaum, J. (ed.) CRYPTO 1991. LNCS, vol. 576, pp. 377–391. Springer, Heidelberg (1992)Google Scholar
  3. 3.
    Ben-Or, M., Goldwasser, S., Wigderson, A.: Completeness theorems for non-cryptographic fault-tolerant distributed computation. In: Proceedings of the 20th Annual ACM Symposium on Theory of Computing (STOC 1988), pp. 1–10. Springer, Heidelberg (1988)Google Scholar
  4. 4.
    Blum, M.: Coin flipping by telephone a protocol for solving impossible problems. SIGACT News 15(1), 23–27 (1983)CrossRefMATHGoogle Scholar
  5. 5.
    Blundo, C., D’Arco, P., De Santis, A., Stinson, D.R.: New results on unconditionally secure distributed oblivious transfer. In: Nyberg, K., Heys, H.M. (eds.) SAC 2002. LNCS, vol. 2595, pp. 291–309. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  6. 6.
    Brassard, G., Crépeau, C., Santha, M.: Oblivious transfers and intersecting codes. IEEETIT: IEEE Transactions on Information Theory 42 (1996)Google Scholar
  7. 7.
    Brassard, G., Crépeau, C., Wolf, S.: Oblivious transfers and privacy amplification. Journal of Cryptology: The journal of the International Association for Cryptologic Research 16(4), 219–237 (2003)MathSciNetCrossRefMATHGoogle Scholar
  8. 8.
    Cachin, C.: Entropy Measures and Unconditional Security in Cryptography. PhD thesis, No. 12187, ETH Zurich, Switzerland (1997)Google Scholar
  9. 9.
    Canetti, R.: Studies in Secure Multiparty Computation and Applications. PhD thesis, Weizmann Institiute of Science, Israel (1996)Google Scholar
  10. 10.
    Canetti, R.: Security and composition of multiparty cryptographic protocols. Journal of Cryptology 13(1), 143–202 (2000)MathSciNetCrossRefMATHGoogle Scholar
  11. 11.
    Canetti, R.: Universally composable security: A new paradigm for cryptographic protocols. Cryptology ePrint Archive, Report 2000/067 (2000)Google Scholar
  12. 12.
    Chaum, D., Crépeau, C., Damgård, I.: Multiparty unconditionally secure protocols (extended abstract). In: Proceedings of the 20th Annual ACM Symposium on Theory of Computing (STOC 1988), pp. 11–19. ACM Press, New York (1988)Google Scholar
  13. 13.
    Cover, T.M., Thomas, J.A.: Elements of Information Theory. Wiley-Interscience, New York (1991)CrossRefMATHGoogle Scholar
  14. 14.
    Crépeau, C.: Verifiable disclosure of secrets and applications (abstract). In: Quisquater, J.-J., Vandewalle, J. (eds.) EUROCRYPT 1989. LNCS, vol. 434, pp. 150–154. Springer, Heidelberg (1990)CrossRefGoogle Scholar
  15. 15.
    Crépeau, C., van de Graaf, J., Tapp, A.: Committed oblivious transfer and private multi-party computation. In: Coppersmith, D. (ed.) CRYPTO 1995. LNCS, vol. 963, pp. 110–123. Springer, Heidelberg (1995)Google Scholar
  16. 16.
    D’Arco, P., Stinson, D.R.: Generalized zig-zag functions and oblivious transfer reductions. In: Vaudenay, S., Youssef, A.M. (eds.) SAC 2001. LNCS, vol. 2259, pp. 87–102. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  17. 17.
    Ding, Y., Harnik, D., Rosen, A., Shaltiel, R.: Constant-round oblivious transfer in the bounded storage model. In: Naor, M. (ed.) TCC 2004. LNCS, vol. 2951, pp. 446–472. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  18. 18.
    Dodis, Y., Micali, S.: Lower bounds for oblivious transfer reductions. In: Fumy, W. (ed.) EUROCRYPT 1997. LNCS, vol. 1233. Springer, Heidelberg (1997)Google Scholar
  19. 19.
    Even, S., Goldreich, O., Lempel, A.: A randomized protocol for signing contracts. Commun. ACM 28(6), 637–647 (1985)MathSciNetCrossRefMATHGoogle Scholar
  20. 20.
    Goldreich, O.: Foundations of Cryptography (Basic Applications), vol. II. Cambridge University Press, Cambridge (2004)CrossRefMATHGoogle Scholar
  21. 21.
    Goldreich, O., Micali, S., Wigderson, A.: How to play any mental game. In: Proceedings of the 19th Annual ACM Symposium on Theory of Computing (STOC 1987), pp. 218–229. ACM Press, New York (1987)Google Scholar
  22. 22.
    Goldwasser, S., Micali, S., Rackoff, C.: The knowledge complexity of interactive proof systems. SIAM J. Comput. 18(1), 186–208 (1989)MathSciNetCrossRefMATHGoogle Scholar
  23. 23.
    Kilian, J.: Founding cryptography on oblivious transfer. In: Proceedings of the Twentieth Annual ACM Symposium on Theory of Computing, pp. 20–31 (1988)Google Scholar
  24. 24.
    Kilian, J.: More general completeness theorems for secure two-party computation. In: STOC, pp. 316–324 (2000)Google Scholar
  25. 25.
    Micali, S., Rogaway, P.: Secure computation (abstract). In: Feigenbaum, J. (ed.) CRYPTO 1991. LNCS, vol. 576, pp. 392–404. Springer, Heidelberg (1992)Google Scholar
  26. 26.
    Nikov, V., Nikova, S., Preneel, B., Vandewalle, J.: On unconditionally secure distributed oblivious transfer. In: Menezes, A., Sarkar, P. (eds.) INDOCRYPT 2002. LNCS, vol. 2551, pp. 395–408. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  27. 27.
    Rabin, M.O.: How to exchange secrets by oblivious transfer. Technical Report TR-81, Harvard Aiken Computation Laboratory (1981)Google Scholar
  28. 28.
    Wiesner, S.: Conjugate coding. SIGACT News 15(1), 78–88 (1983)CrossRefMATHGoogle Scholar
  29. 29.
    Wolf, S., Wullschleger, J.: Oblivious transfer is symmetric. In: Vaudenay, S. (ed.) EUROCRYPT 2006. LNCS, vol. 4004, pp. 222–232. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  30. 30.
    Yao, A.C.: Protocols for secure computations. In: Proceedings of the 23rd Annual IEEE Symposium on Foundations of Computer Science (FOCS 1982), pp. 160–164 (1982)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Claude Crépeau
    • 1
  • George Savvides
    • 1
  • Christian Schaffner
    • 2
  • Jürg Wullschleger
    • 3
  1. 1.McGill UniversityMontréalCanada
  2. 2.BRICSUniversity of ÅrhusDenmark
  3. 3.ETH ZürichSwitzerland

Personalised recommendations