Enhancing the Transmission Security of Content-Based Hidden Biometric Data

  • Muhammad Khurram Khan
  • Jiashu Zhang
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3973)


This paper presents a secure scheme to enhance the transmission security of content-based hidden biometric data over insecure network. Encryp-tion, coding, spread spectrum modulation, and data hiding techniques are used to improve the security and secrecy of the transmitted templates. Secret keys are generated by the biometric image and used as the parameter value and initial condition of the chaotic maps, and each transaction session has different secret keys to protect from the attacks. Templates are encrypted by chaotic encryption, encoded by BCH encoding method, modulated by chaotic neural network parameter modulation (CNNPM), and then hid into the cover image. Experi-mental results show that the security, performance, and accuracy of the presented scheme is encouraging comparable with other methods found in the current literature.


Discrete Wavelet Transform Cover Image Chaotic Sequence Biometric Data Iris Recognition 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Anil, K.J., Pankanti, S., Bolle, R.: Biometrics: Personal Identification in Networked Society. Kluwer, USA (1999)Google Scholar
  2. 2.
    Daugman, J.: High Confidence Visual Recognition of Persons by a Test of Statistical Independence. IEEE Transactions on Pattern Analysis and Machine Intelligence 15, 1148–1161 (1999)CrossRefGoogle Scholar
  3. 3.
    Muhammad, K.K., Zhang, J.: Securing Biometric Templates for Reliable Identity Authentication. In: Huang, D.-S., Zhang, X.-P., Huang, G.-B. (eds.) ICIC 2005. LNCS, vol. 3645, pp. 723–732. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  4. 4.
    Anil, K.J., Umut, U.: Hiding Biometric Data. IEEE Transactions on Pattern Analysis and Machine Intelligence 25, 1494–1498 (2003)CrossRefGoogle Scholar
  5. 5.
    Gunsel, B., Umut, U., Tekalp, A.: Robust Watermarking of Fingerprint Images. Pattern Recognition Elsevier Science Ltd 35, 2739–2747 (2002)zbMATHGoogle Scholar
  6. 6.
    Cox, I.J.: Digital Watermarking. Morgan Kaufmann Publishers, San Francisco (2002)Google Scholar
  7. 7.
    Yeung, M.M., Pankanti, S.: Verification Watermarks on Fingerprint Recognition and Retrieval. Journal of Electronic Imaging 9, 468–476 (2000)CrossRefGoogle Scholar
  8. 8.
    Sonia, J.: Digital Watermarking Techniques: A Case Study in Fingerprints and Faces. In: Proc. Indian Conference on Computer Vision, Graphics, and Image Processing, pp. 139–144 (2000)Google Scholar
  9. 9.
    Teoh, A.B.J., David, C.L.N., Goh, A.: Personalised Cryptographic Key Generation based on Facehashing. Computers and Security 23, 606–614 (2004)CrossRefGoogle Scholar
  10. 10.
    Daugman, J., Downing, C.: Epigenetic Randomness, Complexity, and Singularity of Human Iris Patterns. In: Proc. of the Royal Society, Biological Sciences, vol. B-268, pp. 1737–1740 (2001)Google Scholar
  11. 11.
    Zhao, D., Chen, G.R., Liu, W.: A Chaos-based Robust Wavelet-domain Watermarking Algorithm. Chaos, Solitons and Fractals 22, 47–54 (2004)zbMATHCrossRefGoogle Scholar
  12. 12.
    Zhang, J., Lei, T., Tai, H.M.: A New Watermarking Method Based on Chaotic Maps. In: Proc. IEEE ICME 2004 (2004)Google Scholar
  13. 13.
    Sklar, B.: Digital Communications. Prentice Hall PTR, Upper Saddle River (2001)Google Scholar
  14. 14.
    Siyue, C., Henry, L.: Ergodic Chaotic Parameter Modulation with Application to Digital Image Watermarking. IEEE Trans. on Image Processing 14(10), 1590–1602 (2005)CrossRefGoogle Scholar
  15. 15.
    Lian, S., Chen, G.R., Cheung, A., Wang, Z.Q.: A Chaotic Neural Network based Encryption Algorithm for JPEG2000 Encoded Images. In: Yin, F.-L., Wang, J., Guo, C. (eds.) ISNN 2004. LNCS, vol. 3174, pp. 627–632. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  16. 16.
    Yu, H., Leung, H.: A Comparative Study of Different Chaos-based Spread Spectrum Communication Systems. In: Proc. IEEE ISCAS (III), pp. 213–216 (2003)Google Scholar
  17. 17.
    Li, S., Li, Q., Li, W., Mou, X.Q., Cai, Y.L.: Statistical Properties of Digital Piecewise Linear Chaotic Maps and Their Roles in Cryptography and Pseudo-Random Coding. In: Honary, B. (ed.) Cryptography and Coding 2001. LNCS, vol. 2260, pp. 205–221. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  18. 18.
    Baranovsky, A., Daems, D.: Design of One-dimensional Chaotic Maps with Prescribed Statistical Properties. Int. J. Bifurcation and Chaos 5(6), 1585–1598 (1995)zbMATHCrossRefMathSciNetGoogle Scholar
  19. 19.
    Liao, X.F., Li, X., Pen, J., Chen, G.R.: A Digital Secure Image Communication Scheme based on the Chaotic Chebyshev Map. Int. Journal of Communication Systems 17, 437–445 (2004)CrossRefGoogle Scholar
  20. 20.
    CASIA Iris Database (2005),
  21. 21.
    Katzenbeiser, S., Petitcolas, F.A.: Information Hiding Techniques for Steganography and Digital Watermarking. Artech House Books (2000)Google Scholar
  22. 22.
    Umut, U., Gunsel, B., Tekalp, A.M.: Robust Watermarking of Busy Images. In: Proc. of SPIE Electronic Imaging 2001 Conference, Security and Watermarking of Multimedia Contents III, USA, vol. (4314), pp. 18–25 (2001)Google Scholar
  23. 23.
    Deguillaume, F., Voloshynovskiy, S., Pun, T.: Secure Hybrid Robust Watermarking Resistant against Tampering and Copy Attack. In: Signal Processing, pp. 2133–2170. Elsevier Science Ltd, Amsterdam (2003)Google Scholar
  24. 24.
    Muhammad, K.K., Zhang, J.: Enhancing the Security of Biometric Templates for Trust Worthy Person Authentication. GESTS International Transaction on Computer Science & Engineering 5, 166–176 (2005)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Muhammad Khurram Khan
    • 1
  • Jiashu Zhang
    • 1
  1. 1.Research Group for Biometrics and Security, Sichuan Province Key Laboratory of Signal and Information ProcessingSouthwest Jiaotong UniversityChengduP.R. China

Personalised recommendations