Finding Hidden Group Structure in a Stream of Communications

  • J. Baumes
  • M. Goldberg
  • M. Hayvanovych
  • M. Magdon-Ismail
  • W. Wallace
  • M. Zaki
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3975)

Abstract

A hidden group in a communication network is a group of individuals planning an activity over a communication medium without announcing their intentions. We develop algorithms for separating non-random planning-related communications from random background communications in a streaming model. This work extends previous results related to the identification of hidden groups in the cyclic model. The new statistical model and new algorithms do not assume the existence of a planning time-cycle in the stream of communications of a hidden group. The algorithms construct larger hidden groups by building them up from smaller ones. To illustrate our algorithms, we apply them to the Enron email corpus in order to extract the evolution of Enron’s organizational structure.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Monge, P., Contractor, N.: Theories of Communication Networks. Oxford University Press, Oxford (2002)Google Scholar
  2. 2.
    Baumes, J., Goldberg, M., Magdon-Ismail, M., Wallace, W.A.: Discovering hidden groups in communication networks. In: Chen, H., Moore, R., Zeng, D.D., Leavitt, J. (eds.) ISI 2004. LNCS, vol. 3073, pp. 378–389. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  3. 3.
    Baumes, J., Goldberg, M., Magdon-Ismail, M., Wallace, W.: On hidden groups in communication networks. Technical report, TR 05-15, CS Dept., RPI (2005)Google Scholar
  4. 4.
    Capocci, A., Servedio, V.D.P., Caldarelli, G., Colaiori, F.: Detecting communities in large networks. In: Workshop on Algorithms and Models for the Web-Graph (WAW), pp. 181–188 (2004)Google Scholar
  5. 5.
    Newman, M.E.J.: The structure and function of complex networks. SIAM Review 45, 167–256 (2003)MATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Girvan, M., Newman, M.E.J.: Community structure in social and biological networks. In: Proc. Natl. Acad. Sci., vol. 99, pp. 7821–7826 (2002)Google Scholar
  7. 7.
    Magdon-Ismail, M., Goldberg, M., Wallace, W.A., Siebecker, D.: Locating hidden groups in communication networks using hidden markov models. In: Chen, H., Miranda, R., Zeng, D.D., Demchak, C.C., Schroeder, J., Madhusudan, T. (eds.) ISI 2003. LNCS, vol. 2665, pp. 126–137. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  8. 8.
    Baumes, J., Goldberg, M., Krishnamoorthy, M., Magdon-Ismail, M., Preston, N.: Finding comminities by clustering a graph into overlapping subgraphs. In: Proceedings of IADIS Applied Computing, pp. 97–104 (2005)Google Scholar
  9. 9.
    Baumes, J., Goldberg, M., Magdon-Ismail, M.: Efficient identification of overlapping communities. In: Kantor, P., Muresan, G., Roberts, F., Zeng, D.D., Wang, F.-Y., Chen, H., Merkle, R.C. (eds.) ISI 2005. LNCS, vol. 3495, pp. 27–36. Springer, Heidelberg (2005)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • J. Baumes
    • 1
  • M. Goldberg
    • 1
  • M. Hayvanovych
    • 1
  • M. Magdon-Ismail
    • 1
  • W. Wallace
    • 2
  • M. Zaki
    • 1
  1. 1.CS DepartmentRPITroyUSA
  2. 2.DSES DepartmentRPITroyUSA

Personalised recommendations