A Neural Network Model for Non-smooth Optimization over a Compact Convex Subset

  • Guocheng Li
  • Shiji Song
  • Cheng Wu
  • Zifang Du
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3971)


A neural network model is introduced which is aimed to solve non-smooth optimization problem on a nonempty compact convex subset of R n . By using the subgradient, this neural network model is shown to obey a gradient system of differential inclusion. It is proved that the compact convex subset is a positive invariant and is a attractive to the neural network system, and that all the network trajectories starting from the inside of the compact convex subset converge to the set of equilibrium points of the neural network. The above every equilibrium point of the neural network is an optimal solution of the primal problem. A numerical simulation example is also given to illustrate the qualitative properties of the proposed neural network model.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Hopfield, J.J., Tank, D.W.: Neural Computation of Decisions in Optimization Problems. Biol. Cybern. 52, 141–152 (1985)zbMATHMathSciNetGoogle Scholar
  2. 2.
    Tank, D.W., Hopfield, J.J.: Simple ‘Neural’ Optimization Networks: an A/D Converter, Signal Decision Circuit, and a Linear Programming Circuit. IEEE Trans. Circuits Syst. 33, 533–541 (1986)CrossRefGoogle Scholar
  3. 3.
    Kennedy, M.P., Chua, L.O.: Neural Networks for Nonlinear Programming. IEEE Trans. Circuits Syst. 35, 554–562 (1988)CrossRefMathSciNetGoogle Scholar
  4. 4.
    Rodriguez-Vazquez, A., Dominguez-Castro, R., Rueda, A., Huertas, J.L., Sachez-Sinencio, E.: Nonlinear Switched-Capacitor Neural Networks for Optimization Problems. IEEE Trans. Circuits Syst. 37, 384–397 (1990)CrossRefGoogle Scholar
  5. 5.
    Forti, M., Nistri, P., Quincampoix, M.: Generalized Neural Network for Non-smooth Nonlinear Programming Problems. IEEE Trans. Circuits Syst. 51, 1741–1754 (2004)CrossRefMathSciNetGoogle Scholar
  6. 6.
    Liang, X.B.: A Recurrent Neural Network for Nonlinear Continuously Differentiable Optimization over a Compact Convex Subset. IEEE Trans. Neural Networks 12, 1487–1490 (2001)CrossRefGoogle Scholar
  7. 7.
    Wang, J.: A Deterministic Annealing Neural Network for Convex Programming. Neural Networks 7, 629–641 (1994)zbMATHCrossRefGoogle Scholar
  8. 8.
    Filippov, A.F.: Differential Equations with Discontinuous Right-Hand Side. Kluwer Academic, Dordrecht (1988)Google Scholar
  9. 9.
    Utkin, V.I.: Sliding Modes and Their Application in Variable Structure Systems. U.S.S.R, MIR, Moscow (1978)zbMATHGoogle Scholar
  10. 10.
    Paden, B.E., Sastry, S.S.: Calculus for Computing Filippov’s Differential Inclusion with Application to the Variable Structure Control of Robot Manipulator. IEEE Trans. Circuits Syst. 34, 73–82 (1987)zbMATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Aubin, J.P., Cellina, A.: Differential Inclusion. Springer, Berlin (1984)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Guocheng Li
    • 1
  • Shiji Song
    • 1
  • Cheng Wu
    • 1
  • Zifang Du
    • 2
  1. 1.Department of AutomationTsinghua UniversityBeijingChina
  2. 2.School of StatisticsRenmin UniversityChina

Personalised recommendations