Dynamics of General Neural Networks with Distributed Delays

  • Changyin Sun
  • Linfeng Li
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3971)


The paper introduces a general class of neural networks with periodic inputs. By constructing a Lyapunov functional and the Halanay-type inequality separately, we obtain easily verifiable sufficient conditions ensuring that every solutions of the delayed neural networks converge exponentially to the unique periodic solutions. The results obtained can be regarded as a generalization to the discrete case of previous results.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bouzerman, A., Pattison, T.: Neural Network for Quadratic Optimization with Bound Constraints. IEEE Trans. Neural Networks 4, 293–303 (1993)CrossRefGoogle Scholar
  2. 2.
    Forti, M., Nistri, P.: Global Convergence of Neural Networks with Discontinuous Neuron Activations. IEEE Trans. Circuits and Systems I 50(11), 1421–1435 (2003)CrossRefMathSciNetGoogle Scholar
  3. 3.
    Forti, M., Tesi, A.: New Conditions for Global Stability of Neural Networks with Application to Linear and Quadratic Programming Problems. IEEE Trans. Circuits and Systems I 42, 354–366 (1995)MATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Venetianer, P., Roska, T.: Image Compression by Delayed CNNs. IEEE Trans. Circuits Syst. I 45, 205–215 (1998)CrossRefGoogle Scholar
  5. 5.
    Sun, C., Feng, C.: Neural Networks for Nonconvex Nonlinear Programming Problems: A Switching Control Approach. In: Wang, J., Liao, X.-F., Yi, Z. (eds.) ISNN 2005. LNCS, vol. 3496, pp. 694–699. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  6. 6.
    Morita, M.: Associative Memory with Non-montone Dynamics. Neural networks 6, 115–126 (1993)CrossRefGoogle Scholar
  7. 7.
    Tank, D., Hopfield, J.: Simple “Neural” Optimization Networks: An A/D Converter, Signal Decision Circuit, And A Linear Programming Circuit. IEEE Trans. Circuits & Systems 33, 533–541 (1996)CrossRefGoogle Scholar
  8. 8.
    Kennedy, M., Chua, L.: Neural Networks for Linear and Nonlinear Programming. IEEE Trans. Circuits & Systems 35, 554–562 (1988)CrossRefMathSciNetGoogle Scholar
  9. 9.
    Liao, X., Wong, K., Yang, S.: Convergence Dynamics of Hybrid Bidirectional Associative Memory Neural Networks with Distributed Delays. Physics Letters A 316, 55–64 (2003)MATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Cao, J., Wang, J.: Global Asymptotic Stability of Recurrent Neural Networks with Lipschitz-continuous Activation Functions and Time-Varying Delays. IEEE Trans. Circuits Syst. I 50, 34–44 (2003)CrossRefMathSciNetGoogle Scholar
  11. 11.
    Liao, X., Wang, J.: Algebraic Criteria for Global Exponential Stability of Cellular Neural Networks with Multiple Time Delays. IEEE Trans. Circuits Systems I 50(2), 268–275 (2003)CrossRefMathSciNetGoogle Scholar
  12. 12.
    Sun, C., Feng, C.: Exponential Periodicity of Continuous-time And Discrete-time Neural Networks with Delays. Neural Processing Letters 19(2), 131–146 (2004)CrossRefMathSciNetGoogle Scholar
  13. 13.
    Sun, C., Feng, C.: On Robust Exponential Periodicity of Interval Neural Networks with Delays. Neural Processing Letters 20(1), 53–61 (2004)CrossRefGoogle Scholar
  14. 14.
    Sun, C., Feng, C.: Exponential Periodicity And Stability of Delayed Neural Networks. Mathematics and Computers in Simulation 66, 469–478 (2004)MATHCrossRefMathSciNetGoogle Scholar
  15. 15.
    Sun, C., Zhang, K., Fei, S., Feng, C.: On Exponential Stability of Delayed Neural Networks with A General Class of Activation Functions. Physics Letters A 298, 122–132 (2002)MATHCrossRefMathSciNetGoogle Scholar
  16. 16.
    Sun, C., Feng, C.: Global Robust Exponential Stability of Interval Neural Networks with Delays. Neural Processing Letters 17(1), 107–115 (2003)CrossRefGoogle Scholar
  17. 17.
    Zhang, J., Jin, X.: Global Stability Analysis in Delayed Hopfield Neural Network Models. Neural Networks 13, 745–753 (2000)CrossRefGoogle Scholar
  18. 18.
    Wang, L.: Stability of Cohen–Grossberg Neural Networks with Distributed Delays. Applied Mathematics and Computation 160, 93–110 (2005)MATHCrossRefMathSciNetGoogle Scholar
  19. 19.
    Zeng, Z., Wang, J., Liao, X.: Global Exponential Stability of A General Class of Recurrent Neural Networks with Time-Varying Delays. IEEE Trans. Circuits System I 50, 1353–1359 (2003)CrossRefMathSciNetGoogle Scholar
  20. 20.
    Yi, Z., Tan, K.: Convergence Analysis of Recurrent Neural Networks. Kluwer Academic Publishers, Dordrecht (2003)Google Scholar
  21. 21.
    Mohamad, S.: Global Exponential Stability in Continuous-time And Discrete-time Delay Bi-directional Neural Networks. Physical D 159, 233–251 (2001)MATHCrossRefMathSciNetGoogle Scholar
  22. 22.
    Mohamad, S., Gopalsamy, K.: Exponential Stability of Continuous-time And Discrete-time Cellular Neural Networks with Delays. Applied Mathematics and Computation 135, 17–38 (2003)MATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Changyin Sun
    • 1
    • 2
  • Linfeng Li
    • 1
  1. 1.College of Electrical EngineeringHohai UniversityNanjingP.R. China
  2. 2.Research Institute of AutomationSoutheast UniversityNanjingP.R. China

Personalised recommendations