Advertisement

Lattice Properties of Two-Dimensional Charge-Stabilized Colloidal Crystals

  • Pavel Dyshlovenko
  • Yiming Li
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3994)

Abstract

In this paper, electrostatic interaction in two-dimensional colloidal crystals obeying the non-linear Poisson-Boltzmann equation is studied numerically. We first give an overview of the recently developed approach to study of the lattice properties of colloidal crystals. The central point of the theory is determination of the force constants, which are the coefficients of the energy quadratic form of the crystal. Particular attention is given to the symmetry considerations. Some prospective topics of research are briefly discussed.

Keywords

Force Constant Colloidal Crystal Central Particle Prospective Topic Taiwan Semiconductor Manufacturing Company 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Keim, P., Maret, G., Herz, U., von Grünberg, H.H.: Harmonic lattice behavior of two-dimensional colloidal crystals. Phys. Rev. Lett. 92, 215504 (2004)CrossRefGoogle Scholar
  2. 2.
    Hay, M.B., Workman, R.K., Manne, S.: Two-dimensional condensed phases from particles with tunable interactions. Phys. Rev. E 67, 012401 (2003)CrossRefGoogle Scholar
  3. 3.
    Cheng, Z., Zhu, J., Russel, W.B., Chaikin, P.M.: Phonons in an entropic crystal. Phys. Rev. Lett. 85(7), 1460–1463 (2000)CrossRefGoogle Scholar
  4. 4.
    Penciu, R.S., Kafesaki, M., Fytas, G., Economou, E.N., Steffen, W., Hollingsworth, A., Russel, W.B.: Phonons in colloidal crystals. Europhys. Lett. 58(5), 699–704 (2002)CrossRefGoogle Scholar
  5. 5.
    Weiss, J.A., Larsen, A.E., Grier, D.G.: Interactions, dynamics, and elasticity in charge-stabilized colloidal crystals. J. Chem. Phys. 109(19), 8659–8666 (1998)CrossRefGoogle Scholar
  6. 6.
    Dyshlovenko, P.E.: Evidence of many-particle interactions in two-dimensional charge-stabilized colloidal crystals. Phys. Rev. Lett. 95, 038302 (2005)CrossRefGoogle Scholar
  7. 7.
    Dyshlovenko, P.E.: The paper in preparationGoogle Scholar
  8. 8.
    Adams, M., Fraden, S.: Biophys. J. 74, 669 (1998)Google Scholar
  9. 9.
    Purdy, K.R., Dogic, Z., Fraden, S., Rühm, A., Lurio, L., Mochrie, S.G.J.: Measuring the nematic order of suspensions of colloidal fd virus by x-ray diffraction and optical birefringence. Phys. Rev. E 67, 031708 (2003)CrossRefGoogle Scholar
  10. 10.
    Guilleaume, B., Blaul, J., Ballauff, M., Wittemann, M., Rehahn, M., Goerigk, G.: The distribution of counterions around synthetic rod-like polyelectrolytes in solution. Eur. Phys. J. E 8, 299–309 (2002)CrossRefGoogle Scholar
  11. 11.
    de Soler-Illia, G.J.A.A., Sanchez, C., Lebeau, B., Patarin, J.: Chemical strategies to design textured materials: from microporous and mesoporous oxides to nanonetworks and hierarchical structures. Chem. Rev. 102, 4093–4138 (2002)CrossRefGoogle Scholar
  12. 12.
    Israelachvili, J.N.: Intermolecular and Surface Forces, ch. 12. Academic Press, London (1991)Google Scholar
  13. 13.
    Feynman, R.P.: Statistical Mechanics, ch. 1. W. A. Benjamin, Inc., Massachusetts (1972)Google Scholar
  14. 14.
    Dyshlovenko, P.E.: Adaptive mesh enrichment for the poisson-boltzmann equation. J. Comp. Phys. 172, 198–208 (2001)zbMATHCrossRefGoogle Scholar
  15. 15.
    Dyshlovenko, P.E.: Adaptive numerical method for poisson-boltzmann equation and its application. Comp. Phys. Commun. 147, 335–338 (2002)zbMATHCrossRefGoogle Scholar
  16. 16.
    Li, Y., Sze, S.M., Chao, T.S.: A Practical Implementation of Parallel Dynamic Load Balancing for Adaptive Computing in VLSI Device Simulation. Comp. Phys. Commun. 147, 335–338 (2002)CrossRefGoogle Scholar
  17. 17.
    Li, Y., Chao, T.S., Sze, S.M.: A Domain Partition Approach to Parallel Adaptive Simulation of Dynamic Threshold Voltage MOSFET. Eng. Comput. 18, 124–137 (2002)CrossRefGoogle Scholar
  18. 18.
    Li, Y., Yu, S.M.: A Parallel Adaptive Finite Volume Method for Nanoscale Double-gate MOSFETs Simulation. J. Comput. Appl. Math. 175, 87–99 (2005)zbMATHCrossRefMathSciNetGoogle Scholar
  19. 19.
    Li, Y.: A Parallel Monotone Iterative Method for the Numerical Solution of Multidimensional Semiconductor Poisson Equation. Comp. Phys. Commun. 153, 359–372 (2003)CrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Pavel Dyshlovenko
    • 1
  • Yiming Li
    • 2
  1. 1.Laboratory of Computer SimulationsUlyanovsk State technical UniversityUlyanovskRussia
  2. 2.Department of Communication EngineeringNational Chiao Tung UniversityHsinchuTaiwan

Personalised recommendations