Advertisement

A Graphics Hardware Accelerated Algorithm for Nearest Neighbor Search

  • Benjamin Bustos
  • Oliver Deussen
  • Stefan Hiller
  • Daniel Keim
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3994)

Abstract

We present a GPU algorithm for the nearest neighbor search, an important database problem. The search is completely performed using the GPU: No further post-processing using the CPU is needed. Our experimental results, using large synthetic and real-world data sets, showed that our GPU algorithm is several times faster than its CPU version.

References

  1. 1.
    Sun, C., Agrawal, D., Abbadi, A.: Hardware acceleration for spatial selections and joins. In: Proc. ACM Intl. Conf. on Managment of Data, pp. 455–466 (2003)Google Scholar
  2. 2.
    Bandi, N., Sun, C., Abbadi, A., Agrawal, D.: Hardware acceleration in commercial databases: A case study of spatial operations. In: Proc. Intl. Conf. on Very Large Databases, pp. 1021–1032. Morgan Kaufmann, San Francisco (2004)Google Scholar
  3. 3.
    Govindaraju, N., Lloyd, B., Wang, W., Lin, M., Manocha, D.: Fast computation of database operations using graphics processors. In: Proc. ACM Intl. Conf. on Managment of Data, pp. 215–226 (2004)Google Scholar
  4. 4.
    Böhm, C., Berchtold, S., Keim, D.: Searching in high-dimensional spaces: Index structures for improving the performance of multimedia databases. ACM Computing Surveys 33(3), 322–373 (2001)CrossRefGoogle Scholar
  5. 5.
    Beyer, K., Goldstein, J., Ramakrishnan, R., Shaft, U.: When is “nearest neighbor” meaningful? In: Beeri, C., Bruneman, P. (eds.) ICDT 1999. LNCS, vol. 1540, pp. 217–235. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  6. 6.
    Hettich, S., Bay, S.: The UCI KDD archive (1999), http://kdd.ics.uci.edu

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Benjamin Bustos
    • 1
  • Oliver Deussen
    • 1
  • Stefan Hiller
    • 1
  • Daniel Keim
    • 1
  1. 1.Department of Computer and Information ScienceUniversity of Konstanz 

Personalised recommendations