Automated Discovery in Elementary Extrema Problems

  • Francisco Botana
  • José L. Valcarce
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3992)


This paper describes an enhancement of GDI, a dynamic geometry environment that uses symbolic techniques for performing automatic proof and discovery in elementary geometry. We report a successful add–on that automatically discovers critical points in elementary extrema problems specified via diagrams. Based in classical one variable calculus, the new module, Optimus, is a step ahead in the cooperation between dynamic geometry and computer algebra systems. It can be used in technology rich environments for mathematics education, adding new calculus abilities to dynamic geometry software.


Computer Algebra System Automate Discovery Dynamic Geometry Automate Deduction Dynamic Geometry Software 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Botana, F., Valcarce, J.L.: A dynamic-symbolic interface for geometric theorem discovery. Computers and Education 38(1-3), 21–35 (2002)CrossRefGoogle Scholar
  2. 2.
    Botana, F.: Interactive versus symbolic approaches to plane loci generation in dynamic geometry environments. In: Sloot, P.M.A., Tan, C.J.K., Dongarra, J., Hoekstra, A.G. (eds.) ICCS-ComputSci 2002. LNCS, vol. 2330, pp. 211–218. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  3. 3.
    Botana, F., Valcarce, J.L.: A software tool for the investigation of plane loci. Mathematics and Computers in Simulation 61(2), 141–154 (2003)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Botana, F., Valcarce, J.L.: Automatic determination of envelopes and other derived curves within a graphic environment. Mathematics and Computers in Simulation 67(1–2), 3–13 (2004)MathSciNetzbMATHCrossRefGoogle Scholar
  5. 5.
    Botana, F., Recio, T.: Towards solving the dynamic geometry bottleneck via a symbolic approach. In: Hong, H., Wang, D. (eds.) ADG 2004. LNCS (LNAI), vol. 3763, pp. 92–110. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  6. 6.
    Capani, A., Niesi, G., Robbiano, L.: CoCoA, a system for doing Computations in Commutative Algebra. Available via anonymous ftp from,
  7. 7.
    Gao, X.S., Zhang, J.Z., Chou, S.C.: Geometry Expert. Nine Chapters, Taiwan (1998)Google Scholar
  8. 8.
    Jackiw, N.: The Geometer’s Sketchpad v 4.0. Key Curriculum Press, Berkeley (2002)Google Scholar
  9. 9.
    Laborde, J.M., Bellemain, F.: Cabri Geometry II. Texas Instruments, Dallas (1998)Google Scholar
  10. 10.
    Recio, T., Botana, F.: Where the truth lies (in automatic theorem proving in elementary geometry). In: Laganá, A., Gavrilova, M.L., Kumar, V., Mun, Y., Tan, C.J.K., Gervasi, O. (eds.) ICCSA 2004. LNCS, vol. 3044, pp. 761–770. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  11. 11.
    Richter–Gebert, J., Kortenkamp, U.: The Interactive Geometry Software Cinderella. Springer, Berlin (1999)Google Scholar
  12. 12.
    Roanes–Lozano, E., Roanes–Macías, E., Villar, M.: A bridge between dynamic geometry and computer algebra. Mathematical and Computer Modelling 37(9–10), 1005–1028 (2003)zbMATHCrossRefGoogle Scholar
  13. 13.
    Wang, D.: GEOTHER: A geometry theorem prover. In: McRobbie, M.A., Slaney, J.K. (eds.) CADE 1996. LNCS, vol. 1104, pp. 166–170. Springer, Heidelberg (1996)Google Scholar
  14. 14.
    Liang, T., Wang, D.: Towards a geometric-object-oriented language. In: Hong, H., Wang, D. (eds.) ADG 2004. LNCS (LNAI), vol. 3763, pp. 130–155. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  15. 15.
  16. 16.
  17. 17.

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Francisco Botana
    • 1
  • José L. Valcarce
    • 2
  1. 1.Departamento de Matemática Aplicada IUniversidad de VigoPontevedraSpain
  2. 2.Departamento de MatemáticasIES PontepedriñaSantiagoSpain

Personalised recommendations