Advertisement

A Virtual Test Facility for Simulating Detonation-Induced Fracture of Thin Flexible Shells

  • Ralf Deiterding
  • Fehmi Cirak
  • Sean P. Mauch
  • Daniel I. Meiron
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3992)

Abstract

The fluid-structure interaction simulation of detonation- and shock-wave-loaded fracturing thin-walled structures requires numerical methods that can cope with large deformations as well as topology changes. We present a robust level-set-based approach that integrates a Lagrangian thin shell finite element solver with fracture and fragmentation capabilities with an Eulerian Cartesian detonation solver with optional dynamic mesh adaptation. As an application example, the rupture of a thin aluminum tube due to the passage of an ethylene-oxygen detonation wave is presented.

Keywords

Detonation Wave Ghost Cell Subdivision Surface Cohesive Interface Cartesian Mesh 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Chao, T.-W.: Gaseous detonation-driven fracture of tubes. PhD thesis, California Institute of Technology (2004)Google Scholar
  2. 2.
    Cirak, F., Ortiz, M., Schröder, P.: Subdivision surfaces: a new paradigm for thin-shell finite-element analysis. Int. J. Numer. Meth. Engineering 47, 2039–2072 (2000)zbMATHCrossRefGoogle Scholar
  3. 3.
    Cirak, F., Ortiz, M.: Fully C 1-conforming subdivision elements for finite deformation thin-shell analysis. Int. J. Numer. Meth. Engineering 51, 813–833 (2001)zbMATHCrossRefGoogle Scholar
  4. 4.
    Cirak, F., Ortiz, M., Pandolfi, A.: A Cohesive Approach to Thin-Shell Fracture and Fragmentation. Computer Methods in Appl. Mechanics and Engineering 194, 2604–2618 (2005)zbMATHCrossRefGoogle Scholar
  5. 5.
    Cirak, F., Radovitzky, R.: A Lagrangian-Eulerian Shell-Fluid Coupling Algorithm Based on Level Sets. Computers & Structures 83, 491–498 (2005)CrossRefGoogle Scholar
  6. 6.
    Deiterding, R.: Parallel adaptive simulation of multi-dimensional detonation structures. PhD thesis, Brandenburgische Technische Universität Cottbus (September 2003), Available at http://www.cacr.caltech.edu/~ralf/html/pub.htm
  7. 7.
    Deiterding, R., Radovitzky, R., Mauch, S.P., et al.: A virtual test facility for the efficient simulation of solid materials under high energy shock-wave loading. Engineering with Computers (2005) (Invited submission)Google Scholar
  8. 8.
    Fedkiw, R.P., Aslam, T., Merriman, B., Osher, S.: A non-oscillatory Eulerian approach to interfaces in multimaterial flows (the ghost fluid method). J. Comput. Phys. 152, 457–492 (1999)MathSciNetzbMATHCrossRefGoogle Scholar
  9. 9.
    Fickett, W., Davis, W.C.: Detonation. University of California Press, Berkeley and Los Angeles, California (1979)Google Scholar
  10. 10.
    Mader, C.L.: Numerical modeling of detonations. University of California Press, Berkeley and Los Angeles, California (1979)Google Scholar
  11. 11.
    Mauch, S.P.: Efficient Algorithms for Solving Static Hamilton-Jacobi Equations. PhD thesis, California Institute of Technology (2003)Google Scholar
  12. 12.
    Toro, E.F.: Riemann solvers and numerical methods for fluid dynamics, 2nd edn. Springer, Heidelberg (1999)zbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Ralf Deiterding
    • 1
  • Fehmi Cirak
    • 1
  • Sean P. Mauch
    • 1
  • Daniel I. Meiron
    • 1
  1. 1.California Institute of TechnologyPasadenaUSA

Personalised recommendations