Delays in Biological Regulatory Networks (BRN)

  • Jamil Ahmad
  • Adrien Richard
  • Gilles Bernot
  • Jean-Paul Comet
  • Olivier Roux
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3992)

Abstract

In this article, we propose a refinement of the modeling of genetic regulatory networks based on the approach of René Thomas. The notion of delays of activation/inhibition are added in order to specify which variable is faster affected by a change of its regulators. The formalism of linear hybrid automata is well suited to allow such refinement. We then use HyTech for two purposes: (1) to find automatically all paths from a specified initial state to another one and (2) to synthesize constraints on the delay parameters in order to follow any specific path.

Keywords

Bacillus 

References

  1. 1.
    de Jong, H.: Modeling and simulation of genetic regulatory systems: a literature review. J. Comput. Biol. 9(1), 67–103 (2002)CrossRefGoogle Scholar
  2. 2.
    Thomas, R.: Logical analysis of systems comprising feedback loops. J. Theor. Biol. 73(4), 631–656 (1978)CrossRefGoogle Scholar
  3. 3.
    Snoussi, E.: Qualitative dynamics of a piecewise-linear differential equations: a discrete mapping approach. DSS 4, 189–207 (1989)MathSciNetMATHGoogle Scholar
  4. 4.
    Thomas, R.: Regulatory networks seen as asynchronous automata: A logical description. J. theor. Biol. 153, 1–23 (1991)CrossRefGoogle Scholar
  5. 5.
    Snoussi, E., Thomas, R.: Logical identification of all steady states: the concept of feedback loop caracteristic states. Bull. Math. Biol. 55(5), 973–991 (1993)MATHGoogle Scholar
  6. 6.
    Devloo, V., Hansen, P., Labbé, M.: Identification of all steady states in large networks by logical analysis. Bull. Math. Biol. 65(6), 1025–1051 (2003)CrossRefGoogle Scholar
  7. 7.
    de Jong, H., Geiselmann, J., Batt, G., Hernandez, C., Page, M.: Qualitative simulation of the initiation of sporulation in Bacillus subtilis. Bulletin of Mathematical Biology 66(2), 261–299 (2004)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Bernot, G., Comet, J.P., Richard, A., Guespin, J.: Application of formal methods to biological regulatory networks: Extending Thomas’ asynchronous logical approach with temporal logic. Journal of Theoretical Biology 229(3), 339–347 (2004)MathSciNetCrossRefGoogle Scholar
  9. 9.
    de Jong, H., Geiselmann, J., Hernandez, C., Page, M.: Genetic network analyzer: qualitative simulation of genetic regulatory networks. Bioinformatics 19(3), 336–344 (2003)CrossRefGoogle Scholar
  10. 10.
    Adélaïde, M., Sutre, G.: Parametric analysis and abstraction of genetic regulatory networks. In: Proc. 2nd Workshop on Concurrent Models in Molecular Biology (BioCONCUR 2004), London, UK. Electronic Notes in Theor. Comp. Sci., August 2004. Elsevier, Amsterdam (2004)Google Scholar
  11. 11.
    Thomas, R., Kaufman, M.: Multistationarity, the basis of cell differentiation and memory. Chaos 11, 180–195 (2001)MathSciNetMATHCrossRefGoogle Scholar
  12. 12.
    Henzinger, T.A., Ho, P.H., Wong-Toi, H.: HYTECH: A model checker for hybrid systems. International Journal on Software Tools for Technology Transfer 1(1–2), 110–122 (1997)MATHGoogle Scholar
  13. 13.
    Batt, G., Ropers, D., de Jong, H., Geiselmann, J., Page, M., Schneider, D.: Qualitative analysis and verification of hybrid models of genetic regulatory networks: Nutritional stress response in Escherichia coli. In: Morari, M., Thiele, L. (eds.) HSCC 2005. LNCS, vol. 3414, pp. 134–150. Springer, Heidelberg (2005)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Jamil Ahmad
    • 1
  • Adrien Richard
    • 2
  • Gilles Bernot
    • 2
  • Jean-Paul Comet
    • 2
  • Olivier Roux
    • 1
  1. 1.IRCCyN UMR CNRS 6597Nantes Cedex 3France
  2. 2.Programme épigénomique and IBISCUniversité d’EvryEvry cedexFrance

Personalised recommendations