Heat Diffusion – Searching for the Accurate Modeling

  • Malgorzata Langer
  • Janusz Wozny
  • Malgorzata Jakubowska
  • Zbigniew Lisik
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3991)


The authors study three approaches which allow to model the steady state heat conduction in a 2D multiphase composite. The subject under investigating is the thermal conductivity of a c-BN composite thick film with possible inclusions of air bubbles. To define the thermal conductivity we have utilized (i) a commercial program ANSYS, for which a random structure has been externally generated, (ii) a cellular automata (CA) based model and (iii) a modified cellular automata based model where we have taken into account a thermal contact resistance between adjacent grains of c-BN.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Mathews, J.L., German, R.M., Hems, K.F., Guiton, T.A.: Injection Molding AlN for Thermal Management Applications. Bull. Am. Ceram. Soc. 75(8), 61–65 (1996)Google Scholar
  2. 2.
    Mirkarimi, P.B., McCarty, K.F., Medlin, D.L.: Review of Advance In Cubic Boron Nitride Symthesis. Materials Science and Engineering R21, 47–100 (1997)Google Scholar
  3. 3.
    Giellissee, P., Niculescu, H., Temblay, J., Achmatowicz, S., Jakubowska, M., et al.: High Thermal Conductivity Cubic Boron Nitride Thick Films. In: Proc. of 2001 Int. Symp. on Microelectronics, Baltimore, October 9-11, pp. 379–383 (2001)Google Scholar
  4. 4.
    Achmatowicz, S., Zwierkowska, E., Wyżkiewicz, I., Łobodziński, W.: New Approach to Thermal Conductivity of Thin Films Measurements by Means of Comparative Method. In: Proc. of 35th Int. Symp. On Microel., pp. 655–660 (2003)Google Scholar
  5. 5.
    Gerenrot, D., Berlyand, L., Philips, J.: Random Network Model for Heat Transfer in High Contrast Composite Materials. IEEE Trans. on Advanced Packaging 26(4), 410–416 (2003)CrossRefGoogle Scholar
  6. 6.
    Devpura, A., Prasher, R.S.: Percolation Theory Applied to the Analysis of Thermal Interface Materials in Flip-Chip Technology. In: Itherm 2000, Las Vegas, NV, May 24-26, pp. 21–28 (2000)Google Scholar
  7. 7.
    Staggs, J.E.J.: Estimating the thermal conductivity of chars and porous residues using thermal resistor networks. Fire Safety Journal 37, 107–119 (2002)CrossRefGoogle Scholar
  8. 8.
  9. 9.
    Wolf-Gladrow, D.: Lattice Gas Cellular Automata and Lattice Boltzmann Models: An Introduction. Lecture notes in mathematics, vol. 1795. Springer, Heidelberg (2000)MATHGoogle Scholar
  10. 10.
    Wolfram, S.: A new kind of science. Wolfram Media (May 2002)Google Scholar
  11. 11.
    Haji-Sheikh, A.: Monte Carlo Methods. In: Handbook of Numerical Heat Transfer, pp. 673–722. John Wiley & Sons, Chichester (1988)Google Scholar
  12. 12.
    Mathews, J.H., Fink, K.D.: Numerical Methods Using Matlab, 3rd edn. Prentice Hall, Englewood Cliffs (1999)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Malgorzata Langer
    • 1
  • Janusz Wozny
    • 1
  • Malgorzata Jakubowska
    • 2
  • Zbigniew Lisik
    • 1
  1. 1.Institute of ElectronicsTechnical University of LodzLodzPoland
  2. 2.Institute of Electronic Materials TechnologyWarsawPoland

Personalised recommendations