Heat Diffusion – Searching for the Accurate Modeling

  • Malgorzata Langer
  • Janusz Wozny
  • Malgorzata Jakubowska
  • Zbigniew Lisik
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3991)


The authors study three approaches which allow to model the steady state heat conduction in a 2D multiphase composite. The subject under investigating is the thermal conductivity of a c-BN composite thick film with possible inclusions of air bubbles. To define the thermal conductivity we have utilized (i) a commercial program ANSYS, for which a random structure has been externally generated, (ii) a cellular automata (CA) based model and (iii) a modified cellular automata based model where we have taken into account a thermal contact resistance between adjacent grains of c-BN.


Cellular Automaton Boron Nitride Cellular Automaton Effective Thermal Conductivity Composite Layer 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Mathews, J.L., German, R.M., Hems, K.F., Guiton, T.A.: Injection Molding AlN for Thermal Management Applications. Bull. Am. Ceram. Soc. 75(8), 61–65 (1996)Google Scholar
  2. 2.
    Mirkarimi, P.B., McCarty, K.F., Medlin, D.L.: Review of Advance In Cubic Boron Nitride Symthesis. Materials Science and Engineering R21, 47–100 (1997)Google Scholar
  3. 3.
    Giellissee, P., Niculescu, H., Temblay, J., Achmatowicz, S., Jakubowska, M., et al.: High Thermal Conductivity Cubic Boron Nitride Thick Films. In: Proc. of 2001 Int. Symp. on Microelectronics, Baltimore, October 9-11, pp. 379–383 (2001)Google Scholar
  4. 4.
    Achmatowicz, S., Zwierkowska, E., Wyżkiewicz, I., Łobodziński, W.: New Approach to Thermal Conductivity of Thin Films Measurements by Means of Comparative Method. In: Proc. of 35th Int. Symp. On Microel., pp. 655–660 (2003)Google Scholar
  5. 5.
    Gerenrot, D., Berlyand, L., Philips, J.: Random Network Model for Heat Transfer in High Contrast Composite Materials. IEEE Trans. on Advanced Packaging 26(4), 410–416 (2003)CrossRefGoogle Scholar
  6. 6.
    Devpura, A., Prasher, R.S.: Percolation Theory Applied to the Analysis of Thermal Interface Materials in Flip-Chip Technology. In: Itherm 2000, Las Vegas, NV, May 24-26, pp. 21–28 (2000)Google Scholar
  7. 7.
    Staggs, J.E.J.: Estimating the thermal conductivity of chars and porous residues using thermal resistor networks. Fire Safety Journal 37, 107–119 (2002)CrossRefGoogle Scholar
  8. 8.
  9. 9.
    Wolf-Gladrow, D.: Lattice Gas Cellular Automata and Lattice Boltzmann Models: An Introduction. Lecture notes in mathematics, vol. 1795. Springer, Heidelberg (2000)zbMATHGoogle Scholar
  10. 10.
    Wolfram, S.: A new kind of science. Wolfram Media (May 2002)Google Scholar
  11. 11.
    Haji-Sheikh, A.: Monte Carlo Methods. In: Handbook of Numerical Heat Transfer, pp. 673–722. John Wiley & Sons, Chichester (1988)Google Scholar
  12. 12.
    Mathews, J.H., Fink, K.D.: Numerical Methods Using Matlab, 3rd edn. Prentice Hall, Englewood Cliffs (1999)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Malgorzata Langer
    • 1
  • Janusz Wozny
    • 1
  • Malgorzata Jakubowska
    • 2
  • Zbigniew Lisik
    • 1
  1. 1.Institute of ElectronicsTechnical University of LodzLodzPoland
  2. 2.Institute of Electronic Materials TechnologyWarsawPoland

Personalised recommendations