Advertisement

Identifying Cost-Effective Common Subexpressions to Reduce Operation Count in Tensor Contraction Evaluations

  • Albert Hartono
  • Qingda Lu
  • Xiaoyang Gao
  • Sriram Krishnamoorthy
  • Marcel Nooijen
  • Gerald Baumgartner
  • David E. Bernholdt
  • Venkatesh Choppella
  • Russell M. Pitzer
  • J. Ramanujam
  • Atanas Rountev
  • P. Sadayappan
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3991)

Abstract

Complex tensor contraction expressions arise in accurate electronic structure models in quantum chemistry, such as the coupled cluster method. Transformations using algebraic properties of commutativity and associativity can be used to significantly decrease the number of arithmetic operations required for evaluation of these expressions. Operation minimization is an important optimization step for the Tensor Contraction Engine, a tool being developed for the automatic transformation of high-level tensor contraction expressions into efficient programs. The identification of common subexpressions among a set of tensor contraction expressions can result in a reduction of the total number of operations required to evaluate the tensor contractions. In this paper, we develop an effective algorithm for common subexpression identification and demonstrate its effectiveness on tensor contraction expressions for coupled cluster equations.

References

  1. 1.
    Aho, A., Sethi, R., Ullman, J.: Compilers: Principles, Techniques, and Tools. Addison-Wesley, Reading (1986)Google Scholar
  2. 2.
    Auer, A., Baumgartner, G., Bernholdt, D., Bibireata, A., Choppella, V., Cociorva, D., Gao, X., Harrison, R., Krishanmoorthy, S., Krishnan, S., Lam, C., Nooijen, M., Pitzer, R., Ramanujam, J., Sadayappan, P., Sibiryakov, A.: Automatic code generation for many-body electronic structure methods: The Tensor Contraction Engine. Molecular Physics 104(2), 211–218 (2006)CrossRefGoogle Scholar
  3. 3.
    Baumgartner, G., Auer, A., Bernholdt, D., Bibireata, A., Choppella, V., Cociorva, D., Gao, X., Harrison, R., Hirata, S., Krishnamoorthy, S., Krishnan, S., Lam, C., Lu, Q., Nooijen, M., Pitzer, R., Ramanujam, J., Sadayappan, P., Sibiryakov, A.: Synthesis of high-performance parallel programs for a class of ab initio quantum chemistry models. Proceedings of the IEEE 93(2), 276–292 (2005)CrossRefGoogle Scholar
  4. 4.
    Hartono, A., Sibiryakov, A., Nooijen, M., Baumgartner, G., Bernholdt, D., Hirata, S., Lam, C., Pitzer, R., Ramanujam, J., Sadayappan, P.: Automated operation minimization of tensor contraction expressions in electronic structure calculations. In: Sunderam, V.S., van Albada, G.D., Sloot, P.M.A., Dongarra, J. (eds.) ICCS 2005. LNCS, vol. 3514, pp. 155–164. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  5. 5.
    Koch, H., Christiansen, O., Kobayashi, R., Jørgensen, P., Helgaker, T.: A direct atomic orbital driven implementation of the coupled cluster singles and doubles (CCSD) model. Chem. Phys. Lett, 228–233 (1994)Google Scholar
  6. 6.
    Lam, C., Sadayappan, P., Wenger, R.: On optimizing a class of multi-dimensional loops with reductions for parallel execution. Parallel Processing Letters 7(2), 157–168 (1997)CrossRefMathSciNetGoogle Scholar
  7. 7.
    Scuseria, G., Janssen, C., Schaefer, H.: An efficient reformulation of the closed-shell coupled cluster single and double excitation (CCSD) equations. The Journal of Chemical Physics 89(12), 7382–7387 (1988)CrossRefGoogle Scholar
  8. 8.
    Sibiryakov, A.: Operation Optimization of Tensor Contraction Expressions. Master’s thesis, The Ohio State University, Columbus, OH (August 2004)Google Scholar
  9. 9.
    Stanton, J., Gauss, J., Watts, J., Bartlett, R.: A direct product decomposition approach for symmetry exploitation in many-body methods. I. Energy calculations. The Journal of Chemical Physics 94(6), 4334–4345 (1991)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Albert Hartono
    • 1
  • Qingda Lu
    • 1
  • Xiaoyang Gao
    • 1
  • Sriram Krishnamoorthy
    • 1
  • Marcel Nooijen
    • 3
  • Gerald Baumgartner
    • 4
  • David E. Bernholdt
    • 6
  • Venkatesh Choppella
    • 1
    • 7
  • Russell M. Pitzer
    • 2
  • J. Ramanujam
    • 5
  • Atanas Rountev
    • 1
  • P. Sadayappan
    • 1
  1. 1.Dept. of Computer Science and Engineering 
  2. 2.Dept. of ChemistryThe Ohio State UniversityColumbusUSA
  3. 3.Dept. of ChemistryUniversity of WaterlooWaterlooCanada
  4. 4.Dept. of Computer Science 
  5. 5.Dept. of Electrical and Computer EngineeringLouisiana State UniversityBaton RougeUSA
  6. 6.Computer Sci. & Math. Div.Oak Ridge National LaboratoryOak RidgeUSA
  7. 7.Indian Institute of Information Technology and ManagementIndia

Personalised recommendations