Spatiotemporal Data Mining with Cellular Automata

  • Karl Fu
  • Yang Cai
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3991)


In this paper, we describe a cellular automata model for predicting biological spatiotemporal dynamics in an imagery data flow. The Bayesian probability-based algorithm is used to estimate the algal formation in a two-dimensional space. The dynamics of the cellular artificial life is described with diffusion, transport, collision and deformation. We tested the model with the historical data, including parameters, such as time, position and temperature.


Cellular Automaton Cellular Automaton Artificial Life Cellular Automaton Model Rigid Object 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Lewin, K.: Field Theory in Social Science. Harper and Row (1951)Google Scholar
  2. 2.
    von Neumann, J.: The Theory of Self-reproducing Automata. In: Burks, A. (ed.), Univ. of Illinois Press, Urbana (1966)Google Scholar
  3. 3.
    Gardtner, M.: Mathematical game. The fantastic combinations of John Conroy’s new solitaire game “life”. Scientific American 223, 120–120 (1970)Google Scholar
  4. 4.
    Margolus, N., Toffoli, T.: Cellular Automata Machines: A New Environment for Modeling. The MIT Press, Cambridge (1987)Google Scholar
  5. 5.
    Yeh, A.G.O., Li, X.: Urban Simulation Using Neural Networks and Cellular Automata for Land Use Planning. In: Symposium on Geospatial Theory, Processing and Applications, Ottawa (2002)Google Scholar
  6. 6.
    Wolfram, S.: Statistical Mechanics of Cellular Automata. Rev. Mod. Phys. 55, 601–644 (1983)zbMATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Wolfram, S.: Universality and Complexity in Cellular Automata. Physica D 10, 1–35 (1984)CrossRefMathSciNetGoogle Scholar
  8. 8.
    Wolfram, S.: Twenty Problems in the Theory of Cellular Automata. Physica Scripta T9, 170–183 (1985)CrossRefMathSciNetGoogle Scholar
  9. 9.
    Wolfram, S.: A New Kind of Science, pp. 60–70 and 886. Wolfram Media, Champaign (2002)zbMATHGoogle Scholar
  10. 10.
    Wolfram, S.: Cellular automata as models for complexity. Nature 311(419) (1984)Google Scholar
  11. 11.
    Wolfram, S.: Statistical mechanics of cellular automata. Rev. Mod. Phys. 55(601) (1983)Google Scholar
  12. 12.
    Vichniac, G.: Simulating physics with cellular automata. Physica 10D(96) (1984)Google Scholar
  13. 13.
    Hardy, J., de Pazzis, O., Pomeau, Y.: Molecular dynamics of a classical lattice gas: transport properties and time correlation functions, Phys. Rev. A13(1949) (1976)Google Scholar
  14. 14.
    Leyton, M.: Symmetry, Causality, Mind. MIT Press, Cambridge (1999)Google Scholar
  15. 15.
    Sonika, M., et al.: Image Processing, Analysis, and Machine Vision. PWS Publishing (1999)Google Scholar
  16. 16.
    Zhou, S., Chellappa, R., Moghaddam, B.: Visual tracking and recognition using apprearance-adaptive models in particle filters. IEEE Trans. On Image Processing 13(11), 1491–1506 (2004)CrossRefGoogle Scholar
  17. 17.
    Bandini, S., Pavesi, G.: Controlled generation of two-dimensional patterns based on stochastic cellular automata. Future Generation Computer Systems 18, 973–981 (2002)zbMATHCrossRefGoogle Scholar
  18. 18.
    Stauffer, D., Aharony, A.: Introduction to percolation Theory. Taylor & Francis, London (1992)Google Scholar
  19. 19.
    Essam, J.W.: Percolation theory. Rep. Prog. Phys. 43(833) (1980)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Karl Fu
    • 1
  • Yang Cai
    • 1
  1. 1.Visual Intelligence Studios, Cylab, CIC-2218Carnegie Mellon UniversityPittsburghUSA

Personalised recommendations