Fixed-Parameter Tractability Results for Feedback Set Problems in Tournaments

  • Michael Dom
  • Jiong Guo
  • Falk Hüffner
  • Rolf Niedermeier
  • Anke Truß
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3998)


Complementing recent progress on classical complexity and polynomial-time approximability of feedback set problems in (bipartite) tournaments, we extend and partially improve fixed-parameter tractability results for these problems. We show that Feedback Vertex Set in tournaments is amenable to the novel iterative compression technique. Moreover, we provide data reductions and problem kernels for Feedback Vertex Set and Feedback Arc Set in tournaments, and a depth-bounded search tree for Feedback Arc Set in bipartite tournaments based on a new forbidden subgraph characterization.


Longe Common Subsequence Topological Sort Vertex Deletion Problem Kernel Iterative Compression 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Ailon, N., Charikar, M., Newman, A.: Aggregating inconsistent information: ranking and clustering. In: Proc. 37th STOC, pp. 684–693. ACM, New York (2005)Google Scholar
  2. 2.
    Alon, N.: Ranking tournaments. SIAM Journal on Discrete Mathematics 20(1), 137–142 (2006)zbMATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Cai, M.-C., Deng, X., Zang, W.: An approximation algorithm for feedback vertex sets in tournaments. SIAM Journal on Computing 30(6), 1993–2007 (2001)zbMATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Cai, M.-C., Deng, X., Zang, W.: A min-max theorem on feedback vertex sets. Mathematics of Operations Research 27(2), 361–371 (2002)zbMATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Charbit, P., Thomassé, S., Yeo, A.: The minimum feedback arc set problem is NP-hard for tournaments. Combinatorics, Probability and Computing (to appear, 2005)Google Scholar
  6. 6.
    Conitzer, V.: Computing Slater rankings using similarities among candidates. Technical Report RC23748, IBM Thomas J. Watson Research Center, Yorktown Heights, NY (2005)Google Scholar
  7. 7.
    Dehne, F.K.H.A., Fellows, M.R., Langston, M.A., Rosamond, F.A., Stevens, K.: An O(2O(k) n 3) FPT algorithm for the undirected feedback vertex set problem. In: Wang, L. (ed.) COCOON 2005. LNCS, vol. 3595, pp. 859–869. Springer, Heidelberg (2005), To appear in Theory of Computing SystemsGoogle Scholar
  8. 8.
    Downey, R.G., Fellows, M.R.: Parameterized Complexity. Springer, Heidelberg (1999)Google Scholar
  9. 9.
    Fernau, H.: A top-down approach to search-trees: Improved algorithmics for 3-hitting set. Technical Report TR04-073, Electronic Colloquium on Computational Complexity (2004)Google Scholar
  10. 10.
    Festa, P., Pardalos, P.M., Resende, M.G.C.: Feedback set problems. In: Du, D.Z., Pardalos, P.M. (eds.) Handbook of Combinatorial Optimization, vol. A, pp. 209–258. Kluwer, Dordrecht (1999)Google Scholar
  11. 11.
    Flum, J., Grohe, M.: Parameterized Complexity Theory. Springer, Heidelberg (2006)Google Scholar
  12. 12.
    Fredman, M.L.: On computing the length of longest increasing subsequences. Discrete Mathematics 11(1), 29–35 (1975)zbMATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    Guo, J., Gramm, J., Hüffner, F., Niedermeier, R., Wernicke, S.: Improved fixed-parameter algorithms for two feedback set problems. In: Dehne, F., López-Ortiz, A., Sack, J.-R. (eds.) WADS 2005. LNCS, vol. 3608, pp. 158–168. Springer, Heidelberg (2005), To appear in Journal of Computer and System SciencesGoogle Scholar
  14. 14.
    Niedermeier, R.: Invitation to Fixed-Parameter Algorithms. Oxford University Press, Oxford (2006)zbMATHCrossRefGoogle Scholar
  15. 15.
    Niedermeier, R., Rossmanith, P.: An efficient fixed parameter algorithm for 3-Hitting Set. Journal of Discrete Algorithms 1(1), 89–102 (2003)zbMATHCrossRefMathSciNetGoogle Scholar
  16. 16.
    Raman, V., Saurabh, S.: Parameterized algorithms for feedback set problems and their duals in tournaments. Theoretical Computer Science 351(3), 446–458 (2006)zbMATHCrossRefMathSciNetGoogle Scholar
  17. 17.
    Reed, B., Smith, K., Vetta, A.: Finding odd cycle transversals. Operations Research Letters 32(4), 299–301 (2004)zbMATHCrossRefMathSciNetGoogle Scholar
  18. 18.
    Speckenmeyer, E.: On feedback problems in digraphs. In: Nagl, M. (ed.) WG 1989. LNCS, vol. 411, pp. 218–231. Springer, Heidelberg (1990)Google Scholar
  19. 19.
    Truß, A.: Parameterized algorithms for feedback set problems in tournaments (in German). Diplomarbeit, Institut für Informatik, Friedrich-Schiller-Universität Jena (December 2005)Google Scholar
  20. 20.
    van Zuylen, A.: Deterministic approximation algorithms for ranking and clustering problems. Technical Report 1431, School of Operations Research and Industrial Engineering, Cornell University, Ithaca, NY (September 2005)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Michael Dom
    • 1
  • Jiong Guo
    • 1
  • Falk Hüffner
    • 1
  • Rolf Niedermeier
    • 1
  • Anke Truß
    • 1
  1. 1.Institut für InformatikFriedrich-Schiller-Universität JenaJenaGermany

Personalised recommendations