Abstract

We present two constraints that partition the vertices of an undirected n-vertex, m-edge graph \({\mathcal{G}}=({\mathcal{V}},{\mathcal{E}})\) into a set of vertex-disjoint trees. The first is the resource-forest constraint, where we assume that a subset \({\mathtt{R}}\subseteq {\mathcal{V}}\) of the vertices are resource vertices. The constraint specifies that each tree in the forest must contain at least one resource vertex. This is the natural undirected counterpart of the tree constraint [1], which partitions a directed graph into a forest of directed trees where only certain vertices can be tree roots. We describe a hybrid-Consistency algorithm that runs in \({\mathop{\cal O}}(m+n)\) time for the resource forest constraint, a sharp improvement over the \({\mathop{\cal O}}(mn)\) bound that is known for the directed case. The second constraint is proper-forest. In this variant, we do not have the requirement that each tree contains a resource, but the forest must contain only proper trees, i.e., trees that have at least two vertices each. We develop a hybrid-Consistency algorithm for this case whose running time is \({\mathop{\cal O}}(mn)\) in the worst case, and \({\mathop{\cal O}}(m\sqrt{n})\) in many (typical) cases.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Beldiceanu, N., Flener, P., Lorca, X.: The tree Constraint. In: Barták, R., Milano, M. (eds.) CPAIOR 2005. LNCS, vol. 3524, pp. 64–78. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  2. 2.
    Laurière, J.-L.: A language and a program for stating and solving combinatorial problems. Artificial Intelligence 10, 29–127 (1978)MATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Beldiceanu, N., Contejean, E.: Introducing global constraint in CHIP. Mathl. Comput. Modelling 20(12), 97–123 (1994)MATHCrossRefGoogle Scholar
  4. 4.
    Sellmann, M.: Cost-based filtering for shortest path constraints. In: Rossi, F. (ed.) CP 2003. LNCS, vol. 2833, pp. 694–708. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  5. 5.
    Dincbas, M., Van Hentenryck, P., Simonis, H., Aggoun, A., Graf, T., Berthier, F.: The Constraint Logic Programming Language CHIP. In: Int. Conf. on Fifth Generation Computer Systems (FGCS 1988), Tokyo, Japan, pp. 693–702 (1988)Google Scholar
  6. 6.
    Puget, J.-F.: A C++ Implementation of CLP. In: Second Singapore International Conference on Intelligent Systems (SPICIS), Singapore, November 1994, pp. 256–261 (1994)Google Scholar
  7. 7.
    Cayley, A.: A theorem on trees. Quart. J. Math. 23, 376–378 (1889)Google Scholar
  8. 8.
    Bessière, C., Hebrard, E., Hnich, B., Kızıltan, Z., Walsh, T.: The range and roots Constraints: Specifying Counting and Occurrence Problems. In: IJCAI 2005, pp. 60–65 (2005)Google Scholar
  9. 9.
    Berge, C.: Graphes, 2nd edn. Dunod, New York (1985) (in French)Google Scholar
  10. 10.
    Sellmann, M.: Reduction techniques in Constraint Programming and Combinatorial Optimization. PhD thesis, University of Paderborn (2002)Google Scholar
  11. 11.
    Régin, J.-C.: A filtering algorithm for constraints of difference in CSP. In: AAAI 1994, pp. 362–367 (1994)Google Scholar
  12. 12.
    Gondran, M., Minoux, M.: Graphes et algorithmes, 2nd edn. Eyrolles, Paris (1985) (in French)Google Scholar
  13. 13.
    Micali, S., Vazirani, V.V.: An \(\mathcal{O}(\sqrt{|V|} \cdot |{E}|)\) algorithm for finding maximum matching in general graphs. In: FOCS 1980, New York, pp. 17–27. IEEE, Los Alamitos (1980)Google Scholar
  14. 14.
    Beldiceanu, N., Petit, T., Rochart, G.: Bounds of Graph Characteristics. In: van Beek, P. (ed.) CP 2005. LNCS, vol. 3709, pp. 742–746. Springer, Heidelberg (2005)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Nicolas Beldiceanu
    • 1
  • Irit Katriel
    • 2
  • Xavier Lorca
    • 1
  1. 1.LINA FRE CNRS 2729, École des Mines de NantesNantesFrance
  2. 2.BRICSUniversity of AarhusÅrhusDenmark

Personalised recommendations