On Generators of Random Quasigroup Problems

  • Roman Barták
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3978)

Abstract

Problems that can be sampled randomly are a good source of test suites for comparing quality of constraint satisfaction techniques. Quasigroup problems are representatives of structured random problems that are closer to real-life problems and hence more suitable for benchmarking. In this paper, we describe in detail generators for Quasigroup Completion Problem (QCP) and Quasigroups with Holes (QWH). In particular, we study an improvement of the generator for QCP that produces a larger number of satisfiable problems by using propagation through the all-different constraint. We also re-formulate the algorithm for generating QWH that is much faster than the original generator. Finally, we provide an experimental comparison of all presented generators.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Achlioptas, D., Gomes, C., Kautz, H., Selman, B.: Generating Satisfiable Problem Instances. In: Proceedings of the Seventeenth National Conference on Artificial Intelligence, pp. 256–261. AAAI Press, Menlo Park (2000)Google Scholar
  2. 2.
    Barták, R., Rudová, H.: Limited Assignments: A New Cutoff Strategy for Incomplete Depth-First Search. In: Proceedings of the 2005 ACM Symposium on Applied Computing, pp. 388–392. ACM Press, New York (2005)CrossRefGoogle Scholar
  3. 3.
    Carlsson, M., Ottosson, G., Carlson, B.: An Open-ended Finite Domain Constraint Solver. In: Hartel, P.H., Kuchen, H. (eds.) PLILP 1997. LNCS, vol. 1292, Springer, Heidelberg (1997)Google Scholar
  4. 4.
    Colbourn, C.: The Complexity of Completing Partial Latin Squares. Discrete Applied Mathematics 8, 25–30 (1984)CrossRefMATHGoogle Scholar
  5. 5.
    Dotú, I., del Val, A., Cebrián, M.: Channeling Constraints and Value Ordering in the Quasigroup Completion Problem. In: Proceedings of Eighteenth International Joint Conference on Artificial Inteligence, pp. 1372–1373. Morgan Kaufmann Publishers, San Francisco (2003)Google Scholar
  6. 6.
    Gomez, C., Selman, B.: Problem Structure in the Presence of Perturbations. In: Proceedings of Fourteenth National Conference on Artificial Intelligence, pp. 221–226. AAAI Press, Menlo Park (1997)Google Scholar
  7. 7.
    Gomez, C., Shmoys, D.: Completing Quasigroups or Latin Squares: A Structured Graph Coloring Problem. In: Proceedings Computational Symposium on Graph Coloring and Generalizations (2002)Google Scholar
  8. 8.
    Gomez, C., Shmoys, D.: The Promise of LP to Boost CSP Techniques for Combinatorial Problems. In: Proceedings CPAIOR 2002, pp. 291–305 (2002)Google Scholar
  9. 9.
    Jacobson, M.T., Matthews, P.: Generating Uniformly Distributed Random Latin Squares. Journal of Combinatorial Designs 4, 405–437 (1996)CrossRefMATHGoogle Scholar
  10. 10.
    Kumar, S.K., Russell, A., Sundaram, R.: Approximating Latin Square Extensions. Algorithmica 24, 128–138 (1999)CrossRefMATHGoogle Scholar
  11. 11.
    MacIntyre, E., Prosser, P., Smith, B., Walsh, T.: Random Constraint Satisfaction: theory meets practice. In: Maher, M.J., Puget, J.-F. (eds.) CP 1998. LNCS, vol. 1520, pp. 325–339. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  12. 12.
    Meseguer, P., Walsh, T.: Interleaved and Discrepancy Based Search. In: Proceedings of 13th European Conference on Artificial Intelligence, pp. 239–243. Wiley, Chichester (1998)Google Scholar
  13. 13.
    Régin, J.-C.: A filtering algorithm for constraints of difference in CSPs. In: Proceedings of Twelfth National Conference on Artificial Intelligence, pp. 362–367. AAAI Press, Menlo Park (1994)Google Scholar
  14. 14.
    Shaw, P., Stergiou, K., Walsh, T.: Arc Consistency and Quasigroup Completion. In: Proceedings of the ECAI-1998 workshop on non-binary constraints (1998)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Roman Barták
    • 1
  1. 1.Faculty of Mathematics and PhysicsCharles UniversityPragueCzech Republic

Personalised recommendations