Leveraging Buffering Delay Estimation for Geolocation of Internet Hosts

  • Bamba Gueye
  • Steve Uhlig
  • Artur Ziviani
  • Serge Fdida
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3976)


Geolocation techniques aim at determining the geographic location of an Internet host based on its IP address. Currently, measurement-based geolocation techniques disregard the buffering delays that may be introduced at each hop along the path taken by probe packets. To fill this gap, we propose the GeoBuD (Geolocation using Buffering Delay estimation) approach. Although the network delay and the geographic distance between two Internet hosts have been shown to be related to some extent, leveraging buffering delay estimation at each hop for geolocation purposes is challenging for two reasons. First, correctly estimating the buffering delay at intermediate hops along a traceroute path for geolocation purposes depends on the accurate estimation of the geolocation of the intermediate routers. Second, even given an a priori knowledge of the location of the routers, estimating the buffering delays is difficult due to the coarse-grained information provided by delay measurements. Relying on traceroute measurements, we show that leveraging buffering delay estimation improves accuracy in the measurement-based geolocation of Internet hosts as well as the confidence that the geolocation service associates to each estimation.


geolocation buffering delay estimation traceroute multilateration 


  1. 1.
    Qwerks, Inc., WhereIsIP,
  2. 2.
    MaxMind LLC, GeoIP,
  3. 3.
    Quova Inc., GeoPoint,
  4. 4.
    Padmanabhan, V.N., Subramanian, L.: An investigation of geographic mapping techniques for Internet hosts. In: Proc. of the ACM SIGCOMM 2001, San Diego, CA, USA (August 2001)Google Scholar
  5. 5.
    Ziviani, A., Fdida, S., de Rezende, J.F., Bandeira Duarte, O.C.M.: Improving the accuracy of measurement-based geographic location of Internet hosts. Computer Networks, Elsevier Science 47(4), 503–523 (2005)CrossRefGoogle Scholar
  6. 6.
    Gueye, B., Ziviani, A., Crovella, M., Fdida, S.: Constraint-based geolocation of internet hosts. IEEE/ACM Transactions on Networking (2006) (to appear)Google Scholar
  7. 7.
    Tangmunarunkit, H., Govindan, R., Shenker, S., Estrin, D.: The impact of routing policy on internet paths. In: Proc. of the IEEE INFOCOM 2001, Anchorage, AK, USA (April 2001)Google Scholar
  8. 8.
    Subramanian, L., Padmanabhan, V.N., Katz, R.: Geographic properties of Internet routing. In: Proc. of USENIX 2002, Monterey, CA, USA (June 2002)Google Scholar
  9. 9.
    Zheng, H., Lua, E.K., Pias, M., Griffin, T.: Internet routing policies and round-trip-times. In: Dovrolis, C. (ed.) PAM 2005. LNCS, vol. 3431, pp. 236–250. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  10. 10.
    Davis, C., Vixie, P., Goodwin, T., Dickinson, I.: A means for expressing location information in the domain name system. Internet RFC 1876 (January 1996)Google Scholar
  11. 11.
    University of Illinois at Urbana-Champaign, IP Address to Latitude/Longitude,
  12. 12.
    Moore, D., Periakaruppan, R., Donohoe, J., Claffy, K.: Where in the world is In: Proc. of the INET 2000, Yokohama, Japan (July 2000)Google Scholar
  13. 13.
    Freedman, M., Vutukuru, M., Feamster, N., Balakrishnan, H.: Geographic locality of IP prefixes. In: Proc. of ACM/SIGCOMM Internet Measurement Conference – IMC 2005, Berkeley, CA, USA (October 2005)Google Scholar
  14. 14.
  15. 15.
  16. 16.
    Visualware Inc., VisualRoute,
  17. 17.
  18. 18.
    Sarangworld Traceroute Project (2003),
  19. 19.
    Bahl, P., Padmanabhan, V.N.: RADAR: An in-building RF-based user location and tracking system. In: Proc. of the IEEE INFOCOM 2000, Tel-Aviv, Israel (March 2000)Google Scholar
  20. 20.
    Bovy, C.J., Mertodimedjo, H.T., Hooghiemstra, G., Uijterwaal, H., van Mieghem, P.: Analysis of end-to-end delay measurements in Internet. In: Proc. of the Passive and Active Measurement Workshop – PAM 2002, Fort Collins, CO, USA (March 2002)Google Scholar
  21. 21.
    Ziviani, A., Fdida, S., de Rezende, J.F., Bandeira Duarte, O.C.M.: Toward a measurement-based geographic location service. In: Barakat, C., Pratt, I. (eds.) PAM 2004. LNCS, vol. 3015, pp. 43–52. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  22. 22.
    van Langen, S., Zhou, X., van Mieghem, P.: On the estimation of Internet distances using landmarks. In: Proc. of the International Conference on Next Generation Teletraffic and Wired/Wireless Advanced Networking – NEW2AN 2004, St. Petersburg, Russia (February 2004)Google Scholar
  23. 23.
    Jacobson, V.: Traceroure Software (1999),
  24. 24.
    PlanetLab: An open platform for developing, deploying, and accessing planetary-scale services (2002),
  25. 25.
    NLANR Active Measurement Project (1998),
  26. 26.
    RIPE Test Traffic Measurements (2000),
  27. 27.
  28. 28.
    Spring, N., Mahajan, R., Anderson, T.: Quantifying the causes of path inflation. In: Proc. of the ACM SIGCOMM 2003, Karlsruhe, Germany (August 2003)Google Scholar

Copyright information

© IFIP International Federation for Information Processing 2006

Authors and Affiliations

  • Bamba Gueye
    • 1
  • Steve Uhlig
    • 2
  • Artur Ziviani
    • 3
  • Serge Fdida
    • 1
  1. 1.Laboratoire d’Informatique de Paris 6 (LIP6)Université Pierre et Marie CurieFrance
  2. 2.Department of Computing Science and EngineeringUniversité Catholique de LouvainBelgium
  3. 3.National Laboratory for Scientific Computing (LNCC)Brazil

Personalised recommendations