Design of Autonomous DNA Cellular Automata

  • Peng Yin
  • Sudheer Sahu
  • Andrew J. Turberfield
  • John H. Reif
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3892)


Recent experimental progress in DNA lattice construction, DNA robotics, and DNA computing provides the basis for designing DNA cellular computing devices, i.e. autonomous nano-mechanical DNA computing devices embedded in DNA lattices. Once assembled, DNA cellular computing devices can serve as reusable, compact computing devices that perform (universal) computation, and programmable robotics devices that demonstrate complex motion. As a prototype of such devices, we recently reported the design of an Autonomous DNA Turing Machine, which is capable of universal sequential computation, and universal translational motion, i.e. the motion of the head of a single tape universal mechanical Turing machine. In this paper, we describe the design of an Autonomous DNA Cellular Automaton (ADCA), which can perform parallel universal computation by mimicking a one-dimensional (1D) universal cellular automaton. In the computation process, this device, embedded in a 1D DNA lattice, also demonstrates well coordinated parallel motion. The key technical innovation here is a molecular mechanism that synchronizes pipelined “molecular reaction waves” along a 1D track, and in doing so, realizes parallel computation. We first describe the design of ADCA on an abstract level, and then present detailed DNA sequence level implementation using commercially available protein enzymes. We also discuss how to extend the 1D design to 2D.


Cellular Automaton Turing Machine Transition Rule Reaction Wave Endonuclease Recognition Site 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Adleman, L.: Molecular computation of solutions to combinatorial problems. Science 266, 1021–1024 (1994)CrossRefGoogle Scholar
  2. 2.
    Alberti, P., Mergny, J.L.: DNA duplex-quadruplex exchange as the basis for a nanomolecular machine. Proc. Natl. Acad. Sci. USA 100, 1569–1573 (2003)CrossRefGoogle Scholar
  3. 3.
    Barish, R., Rothemund, P.W.K., Winfree, E.: Algorithmic self-assembly of a binary counter using DNA tiles (in preparation, 2005)Google Scholar
  4. 4.
    Bath, J., Green, S.J., Turberfield, A.J.: A free-running DNA motor powered by a nicking enzyme. Angew. Chem. Intl. Ed. 44, 4358–4361 (2005)CrossRefGoogle Scholar
  5. 5.
    Benenson, Y., Adar, R., Paz-Elizur, T., Livneh, Z., Shapiro, E.: DNA molecule provides a computing machine with both data and fuel. Proc. Natl. Acad. Sci. USA 100, 2191–2196 (2003)CrossRefGoogle Scholar
  6. 6.
    Benenson, Y., Gil, B., Ben-Dor, U., Adar, R., Shapiro, E.: An autonomous molecular computer for logical control of gene expression. Nature 429, 423–429 (2004)CrossRefGoogle Scholar
  7. 7.
    Benenson, Y., Paz-Elizur, T., Adar, R., Keinan, E., Livneh, Z., Shapiro, E.: Programmable and autonomous computing machine made of biomolecules. Nature 414, 430–434 (2001)CrossRefGoogle Scholar
  8. 8.
    Chelyapov, N., Brun, Y., Gopalkrishnan, M., Reishus, D., Shaw, B., Adleman, L.: DNA triangles and self-assembled hexagonal tilings. J. Am. Chem. Soc. 126, 13924–13925 (2004)CrossRefGoogle Scholar
  9. 9.
    Chen, Y., Wang, M., Mao, C.: An autonomous DNA nanomotor powered by a DNA enzyme. Angew. Chem. Int. Ed. 43, 3554–3557 (2004)CrossRefGoogle Scholar
  10. 10.
    Feng, L., Park, S.H., Reif, J.H., Yan, H.: A two-state DNA lattice switched by DNA nanoactuator. Angew. Chem. Int. Ed. 42, 4342–4346 (2003)CrossRefGoogle Scholar
  11. 11.
    He, Y., Chen, Y., Liu, H., Ribbe, A.E., Mao, C.: Self-assembly of hexagonal DNA two-dimensional (2D) arrays. J. Am. Chem. Soc. 127, 12202–12203 (2005)CrossRefGoogle Scholar
  12. 12.
    Henry, A.A., Romesberg, F.E.: Beyond A, C, G, and T: Augmenting nature’s alphabet. Curr. Opin. Chem. Biol 7, 727–733 (2003)CrossRefGoogle Scholar
  13. 13.
    Kuramochi, J., Sakakibara, Y.: Intensive in vitro experiments of implementing and executing finite automata in test tube. In: Carbone, A., Pierce, N.A. (eds.) DNA 2005. LNCS, vol. 3892, pp. 59–67. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  14. 14.
    LaBean, T.H., Yan, H., Kopatsch, J., Liu, F., Winfree, E., Reif, J.H., Seeman, N.C.: The construction, analysis, ligation and self-assembly of DNA triple crossover complexes. J. Am. Chem. Soc. 122, 1848–1860 (2000)CrossRefGoogle Scholar
  15. 15.
    Liu, D., Wang, M., Deng, Z., Walulu, R., Mao, C.: Tensegrity: Construction of rigid DNA triangles with flexible four-arm DNA junctions. J. Am. Chem. Soc. 126, 2324–2325 (2004)CrossRefGoogle Scholar
  16. 16.
    Malo, J., Mitchell, J.C., Venien-Bryan, C., Harris, J.R., Wille, H., Sherratt, D.J., Turberfield, A.J.: Engineering a 2D protein-DNA crystal. Angew. Chem. Intl. Ed. 44, 3057–3061 (2005)CrossRefGoogle Scholar
  17. 17.
    Mao, C., LaBean, T.H., Reif, J.H., Seeman, N.C.: Logical computation using algorithmic self-assembly of DNA triple-crossover molecules. Nature 407, 493–496 (2000)CrossRefGoogle Scholar
  18. 18.
    Mitchell, J.C., Harris, J.R., Malo, J., Bath, J.J., Turberfield, A.J.: Self-assembly of chiral DNA nanotubes. J. Am. Chem. Soc. 126, 16342–16343 (2004)CrossRefGoogle Scholar
  19. 19.
    Rothemund, P.W.K.: A DNA and restriction enzyme implementation of Turing machines. In: Lipton, R.J., Baum, E.B. (eds.) DNA Based Computers: Proceedings of the DIMACS Workshop, Providence, Rhode Island, April 4, vol. 27, pp. 75–119. American Mathematical Society, Princeton (1995)Google Scholar
  20. 20.
    Rothemund, P.W.K.: Generation of arbitrary nanoscale shapes and patterns by scaffolded DNA origami (2005)Google Scholar
  21. 21.
    Rothemund, P.W.K., Ekani-Nkodo, A., Papadakis, N., Kumar, A., Fygenson, D.K., Winfree, E.: Design and characterization of programmable DNA nanotubes. J. Am. Chem. Soc. 126, 16344–16353 (2004)CrossRefGoogle Scholar
  22. 22.
    Rothemund, P.W.K., Papadakis, N., Winfree, E.: Algorithmic self-assembly of DNA sierpinski triangles. PLoS Biology 2(12), 2–e424 (2004)CrossRefGoogle Scholar
  23. 23.
    Seeman, N.C.: From genes to machines: DNA nanomechanical devices. Trends in Biochemical Sciences 30, 119–125 (2005)CrossRefGoogle Scholar
  24. 24.
    Sherman, W.B., Seeman, N.C.: A precisely controlled DNA biped walking device. Nano Lett. 4, 1203–1207 (2004)CrossRefGoogle Scholar
  25. 25.
    Shin, J.S., Pierce, N.A.: A synthetic DNA walker for molecular transport. J. Am. Chem. Soc. 126, 10834–10835 (2004)CrossRefGoogle Scholar
  26. 26.
    Stojanovic, M.N., Semova, S., Kolpashchikov, D., Macdonald, J., Morgan, C., Stefanovic, D.: Deoxyribozyme-based ligase logic gates and their initial circuits. J. Am. Chem. Soc. 127, 6914–6915 (2005)CrossRefGoogle Scholar
  27. 27.
    Tian, Y., He, Y., Chen, Y., Yin, P., Mao, C.: Molecular devices - a DNA zyme that walks processively and autonomously along a one-dimensional track. Angew. Chem. Intl. Ed. 44, 4355–4358 (2005)CrossRefGoogle Scholar
  28. 28.
    Turberfield, A.J., Mitchell, J.C., Yurke Jr., B., Mills, A.P., Blakey, M.I., Simmel, F.C.: DNA fuel for free-running nanomachines. Phys. Rev. Lett. 90, 118102 (2003)CrossRefGoogle Scholar
  29. 29.
    Winfree, E., Liu, F., Wenzler, L.A., Seeman, N.C.: Design and self-assembly of two-dimensional DNA crystals. Nature 394(6693), 539–544 (1998)CrossRefGoogle Scholar
  30. 30.
    Wolfram, S.: A new kind of science. Wolfram Media, Inc., Champaign (2002)zbMATHGoogle Scholar
  31. 31.
    Yan, H., LaBean, T.H., Feng, L., Reif, J.H.: Directed nucleation assembly of DNA tile complexes for barcode patterned DNA lattices. Proc. Natl. Acad. Sci. USA 100(14), 8103–8108 (2003)CrossRefGoogle Scholar
  32. 32.
    Yan, H., Park, S.H., Finkelstein, G., Reif, J.H., LaBean, T.H.: DNA-templated self-assembly of protein arrays and highly conductive nanowires. Science 301(5641), 1882–1884 (2003)CrossRefGoogle Scholar
  33. 33.
    Yan, H., Zhang, X., Shen, Z., Seeman, N.C.: A robust DNA mechanical device controlled by hybridization topology. Nature 415, 62–65 (2002)CrossRefGoogle Scholar
  34. 34.
    Yin, P., Turberfield, A.J., Reif, J.H.: Designs of autonomous unidirectional walking DNA devices. In: Ferretti, C., Mauri, G., Zandron, C. (eds.) DNA 2004. LNCS, vol. 3384, pp. 119–130. Springer, Heidelberg (2005)Google Scholar
  35. 35.
    Yin, P., Turberfield, A.J., Sahu, S., Reif, J.H.: Design of an autonomous DNA nanomechanical device capable of universal computation and universal translational motion. In: Ferretti, C., Mauri, G., Zandron, C. (eds.) DNA 2004. LNCS, vol. 3384, pp. 344–356. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  36. 36.
    Yin, P., Yan, H., Daniell, X.G., Turberfield, A.J., Reif, J.H.: A unidirectional DNA walker moving autonomously along a linear track. Angew. Chem. Int. Ed. 43, 4906–4911 (2004)CrossRefGoogle Scholar
  37. 37.
    Yurke, B., Turberfield Jr., A.J., Mills, A.P., Simmel, F.C., Neumann, J.L.: A DNA-fuelled molecular machine made of DNA. Nature 406, 605–608 (2000)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Peng Yin
    • 1
  • Sudheer Sahu
    • 1
  • Andrew J. Turberfield
    • 2
  • John H. Reif
    • 1
  1. 1.Department of Computer ScienceDuke UniversityDurhamUSA
  2. 2.Department of Physics, Clarendon LaboratoryUniversity of OxfordOxfordUK

Personalised recommendations