Development of an In Vivo Computer Based on Escherichia coli

  • Hirotaka Nakagawa
  • Kensaku Sakamoto
  • Yasubumi Sakakibara
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3892)

Abstract

We present a novel framework to develop a programmable and autonomous in vivo computer using E. coli, and implement in vivo finite-state automata based on the framework by employing the protein-synthesis mechanism of E. coli. Our fundamental idea to develop a programmable and autonomous finite-state automata on E. coli is that we first encode an input string into one plasmid, encode state-transition functions into the other plasmid, and introduce those two plasmids into an E. coli cell by electroporation. Second, we execute a protein-synthesis process in E. coli combined with four-base codon techniques to simulate a computation (accepting) process of finite automata, which has been proposed for in vitro translation-based computations in [8]. This approach enables us to develop a programmable in vivo computer by simply replacing a plasmid encoding a state-transition function with others. Further, our in vivo finite automata are autonomous because the protein-synthesis process is autonomously executed in the living E. coli cell. We show some successful experiments to run an in vivo finite-state automaton on E. coli.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Anderson, J.C., Magliery, T.J., Schultz, P.G.: Exploring the limits of codon and anticodon size. Chemistry & Biology 9, 237–244 (2002)CrossRefGoogle Scholar
  2. 2.
    Benenson, Y., Paz-Ellzur, T., Adar, R., Keinan, E., Livneh, Z., Shapiro, E.: Programmable and autonomous computing machine made of biomolecules. Nature 414, 430–434 (2001)CrossRefGoogle Scholar
  3. 3.
    Bishop, R.E., Leskiw, B.K., Hodges, R.S., Kay, C.M., Weiner, J.H.: The entericidin locus of Escherichia coli and its implications for programmed bacterial cell death. Journal of Molecular Biology 280, 583–596 (1998)CrossRefGoogle Scholar
  4. 4.
    Hohsaka, T., Ashizuka, Y., Taira, H., Murakami, H., Sisido, M.: Incorporation of nonnatural amino acids into proteins by using various four-base codons in an Escherichia coli in vitro translation system. Biochemistry 40, 11060–11064 (2001)CrossRefGoogle Scholar
  5. 5.
    Hohsaka, T., Ashizuka, Y., Murakami, H., Sisido, M.: Five-base codons for incorporation of nonnatural amino acids into proteins. Nucleic Acids Research 29, 3646–3651 (2001)CrossRefGoogle Scholar
  6. 6.
    Magliery, T.J., Anderson, J.C., Schultz, P.G.: Expanding the genetic code: selection of efficient suppressors of four-base codons and identification of “shifty” four-base codons with a library approach in Escherichia coli. Journal of Molecular Biology 307, 755–769 (2001)CrossRefGoogle Scholar
  7. 7.
    Normanly, J., Masson, J.M., Kleina, L.G., Abelson, J., Miller, J.H.: Construction of two Escherichia coli amber suppressor genes. Proceeding of the National Academy of Sciences USA 83, 6548–6552 (1986)CrossRefGoogle Scholar
  8. 8.
    Sakakibara, Y., Hohsaka, T.: In Vitro Translation-based Computations. In: Chen, J., Reif, J.H. (eds.) DNA 2003. LNCS, vol. 2943, pp. 175–179. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  9. 9.
    Yokomori, T., Sakakibara, Y., Kobayashi, S.: A Magic Pot: Self-assembly computation revisited. In: Brauer, W., Ehrig, H., Karhumäki, J., Salomaa, A. (eds.) Formal and Natural Computing. LNCS, vol. 2300, pp. 418–429. Springer, Heidelberg (2002)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Hirotaka Nakagawa
    • 1
  • Kensaku Sakamoto
    • 2
  • Yasubumi Sakakibara
    • 1
  1. 1.Department of Biosciences and InformaticsKeio UniversityYokohamaJapan
  2. 2.RIKEN Genomic Sciences CenterYokohamaJapan

Personalised recommendations