Mining Time Series with Mine Time

  • Lefteris Koumakis
  • Vassilis Moustakis
  • Alexandros Kanterakis
  • George Potamias
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3955)


We present, Mine Time, a tool that supports discovery over time series data. Mine Time is realized by the introduction of novel algorithmic processes, which support assessment of coherence and similarity across timeseries data. The innovation comes from the inclusion of specific ‘control’ operations in the elaborated time-series matching metric. The final outcome is the clustering of time-series into similar-groups. Clustering is performed via the appropriate customization of a phylogeny-based clustering algorithm and tool. We demonstrate Mine Time via two experiments.


Mine Time Dynamic Time Warping Neighbor Join Phylogenetic Cluster Star Tree 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Agrawal, R., Lin, K., Sawhney, H.S., Shim, K.: Fast Similarity Search in the Presence of Noise, Scaling, and Translation in Time-Series Databases. In: Proc. 21st VLDB Conf., Zurich, Switzerland, pp. 490–501 (1995)Google Scholar
  2. 2.
    Box, G.E.P., Jenkins, G.M.: Time Series Analysis, Forecasting and Control. Prentice-Hall, Englewood Cliffs (1976)zbMATHGoogle Scholar
  3. 3.
    Day, W.: Computational complexity of inferring phylogenies from dissimilarity matrices. Bull. Math. Biol. 49(4), 461–467 (1987)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Faloutsos, C., Ranganathan, M., Manolopoulos, Y.: Fast Sequence Matching in Time-Series Databases. In: Proc. SIGMOD 1994 (1994)Google Scholar
  5. 5.
    Foulds, L.R., Graham, R.L.: The Steiner problem in phylogeny is NP-complete. Advances Appl. Math. 3, 43–49 (1982)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Jagadish, H., Mendelzon, A., Milo, T.: Similarity-Based Queries. In: Proc. 14th Symp. on Principles of Database Systems PODS 1995, pp. 36–45 (1995)Google Scholar
  7. 7.
    Laird, P.: Identifying and using patterns in sequential data. In: Jantke, K., Kobayashi, S., Tomita, E., Yokomori, T. (eds.) Algorithmic Learning Theory, 4th International Workshop, pp. 1–118. Springer, Berlin (1993)CrossRefGoogle Scholar
  8. 8.
    Mannila, H., Toivonen, H., Verkamo, A.: Discovering frequent episodes in sequences. In: Proc. 1st International Conference on Knowledge Discovery and Data Mining (KDD 1995), Montreal, Canada, pp. 210–215 (1995)Google Scholar
  9. 9.
    Morik, K.: The representation race - preprocessing for handling time phenomena. In: Lopez de Mantaras, R., Plaza, E. (eds.) ECML 2000. LNCS, vol. 1810, pp. 4–19. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  10. 10.
    Pavlidis, T., Horowitz, S.: Segmentation of plane curves. IEEE Trans. On Computers 23(8) (1974)Google Scholar
  11. 11.
    Pham, D.T., Chan, A.B.: Control Chart Pattern Recognition using a New Type of Self Organizing Neural Network. Instn, Mech, Engrs. 212(1), 115–127 (1998)Google Scholar
  12. 12.
    Saitou, N., Nei, M.: The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol. Biol. Evo. 4(4), 406–425 (1987)Google Scholar
  13. 13.
    Saitou, N., Imanishi, T.: Relative efficiencies of the Fitch-Margoliash, maximum-parsimony, maximum-likelihood, minimum-evolution, and neighbor-joining methods of phylogenetic tree construction in obtaining the correct tree. Mol. Biol. Evol. 6, 514–525 (1989)Google Scholar
  14. 14.
    Studier, J., Keppler, K.: A note on the neighbor-joining algorithm of Saitou and Nei. Mol. Biol. Evol. 5, 729–731 (1988)Google Scholar
  15. 15.

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Lefteris Koumakis
    • 1
  • Vassilis Moustakis
    • 1
    • 2
  • Alexandros Kanterakis
    • 1
  • George Potamias
    • 1
  1. 1.Institute of Computer ScienceFoundation for Research and Technology-Hellas (FORTH)Heraklion, CreteGreece
  2. 2.Department of Production and Management EngineeringTechnical University of CreteKounoupidiana, Chania, CreteGreece

Personalised recommendations