Formalisation and Analysis of the Temporal Dynamics of Conditioning

  • Tibor Bosse
  • Catholijn M. Jonker
  • Sander A. Los
  • Leendert van der Torre
  • Jan Treur
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3950)


In order to create adaptive Agent Systems with abilities matching those of their biological counterparts, a natural approach is to incorporate classical conditioning mechanisms into such systems. However, existing models for classical conditioning are usually based on differential equations. Since the design of Agent Systems is traditionally based on qualitative conceptual languages, these differential equations are often not directly appropriate to serve as an input for Agent System design. To deal with this problem, this paper explores a formal description and analysis of a conditioning process based on logical specification and analysis methods of dynamic properties of conditioning. Specific types of dynamic properties are global properties, describing properties of the process as a whole, or local properties, describing properties of basic steps in a conditioning process. If the latter type of properties are specified in an executable format, they provide a temporal declarative specification of a simulation model. Global properties can be checked automatically for simulated or other traces. Using these methods the properties of conditioning processes informally expressed by Los and Heuvel [8] have been formalised and verified against a specification of local properties based on Machado [9]’s mathematical model.


Conditioned Stimulus Unconditioned Stimulus Classical Conditioning Global Property Preceding Trial 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Balkenius, C., Morén, J.: Dynamics of a classical conditioning model. Autonomous Robots 7, 41–56 (1999)CrossRefGoogle Scholar
  2. 2.
    Bosse, T., Delfos, M.F., Jonker, C.M., Treur, J.: Analysis of Adaptive Dynamical Systems for Eating Regulation Disorders. In: Proc. of the 25th Annual Conf. of the Cognitive Science Society, CogSci 2003, Lawrence Erlbaum Associates, Inc., Mahwah, NJ (2003)Google Scholar
  3. 3.
    Bosse, T., Jonker, C.M., Treur, J.: Simulation of Conditioning Mechanisms in Agents. In: Balsa, J., Moniz, L., Reis, L.P. (eds.) Proceedings of the Third Workshop on Multi-Agent Systems: Theory and Applications, MASTA 2005 (2005)Google Scholar
  4. 4.
    Dastani, M., Dignum, F., Meyer, J.-J.C.: 3APL: A Programming Language for Cognitive Agents. ERCIM News, European Research Consortium for Informatics and Mathematics, Special issue on Cognitive Systems (53) (2003)Google Scholar
  5. 5.
    Gallistel, C.R., Gibbon, J.: Time, rate, and conditioning. Psychological Review 107, 289–344 (2000)CrossRefGoogle Scholar
  6. 6.
    Jonker, C.M., Treur, J.: Compositional Verification of Multi-Agent Systems: a Formal Analysis of Pro-activeness and Reactiveness. International Journal of Cooperative Information Systems 11, 51–92 (2002)CrossRefGoogle Scholar
  7. 7.
    Los, S.A., Knol, D.L., Boers, R.M.: The Foreperiod Effect Revisited: Conditioning as a Basis for Nonspecific Preparation. Acta Psychologica 106, 121–145 (2001)CrossRefGoogle Scholar
  8. 8.
    Los, S.A., van den Heuvel, C.E.: Intentional and Unintentional Contributions to Nonspecific Preparation During Reaction Time Foreperiods. Journal of Experimental Psychology: Human Perception and Performance 27, 370–386 (2001)Google Scholar
  9. 9.
    Machado, A.: Learning the temporal Dynamics of Behaviour. Psychological Review 104, 241–265 (1997)CrossRefGoogle Scholar
  10. 10.
    Niemi, P., Naatanen, R.: Foreperiod and Simple Reaction Time. Psychological Bulletin 89, 133–162 (1981)CrossRefGoogle Scholar
  11. 11.
    Port, R.F., van Gelder, T.J.: Mind as Motion: Explorations in the Dynamics of Cognition. MIT Press, Cambridge (1995)Google Scholar
  12. 12.
    Reiter, R.: Knowledge in Action: Logical Foundations for Specifying and Implementing Dynamical Systems. MIT Press, Cambridge (2001)zbMATHGoogle Scholar
  13. 13.
    Rist, F., Cohen, R.: Sequential effects in the reaction times of schizophrenics: crossover and modality shift effects. In: Steinhauer, E.R., Gruzelier, J.H., Zubin, J. (eds.) Handbook of schizophrenia. Neuropsychology, psychophysiology and information processing, vol. 5, pp. 241–271. Elsevier, Amsterdam (1991)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Tibor Bosse
    • 1
  • Catholijn M. Jonker
    • 2
  • Sander A. Los
    • 3
  • Leendert van der Torre
    • 4
    • 5
  • Jan Treur
    • 1
  1. 1.Department of Artificial IntelligenceVrije Universiteit AmsterdamAmsterdamThe Netherlands
  2. 2.Nijmegen Institute for Cognition and InformationRadboud Universiteit NijmegenNijmegenThe Netherlands
  3. 3.Department of Cognitive PsychologyVrije Universiteit AmsterdamAmsterdamThe Netherlands
  4. 4.Centrum voor Wiskunde en InformaticaAmsterdamThe Netherlands
  5. 5.Delft University of TechnologyDelftThe Netherlands

Personalised recommendations