Comparison of Workflow Scheduling Strategies on the Grid

  • Marek Wieczorek
  • Radu Prodan
  • Thomas Fahringer
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3911)


Scheduling is a key concern for the execution of performance-driven Grid applications. In this paper we comparatively examine different existing approaches for scheduling of scientific workflow applications in a Grid environment. We evaluate three algorithms namely genetic, HEFT, and simple “myopic” and compare incremental workflow partitioning against the full-graph scheduling strategy. We demonstrate experiments using real-world scientific applications covering both balanced (symmetric) and unbalanced (asymmetric) workflows. Our results demonstrate that full-graph scheduling with the HEFT algorithm performs best compared to the other strategies examined in this paper.


Genetic Algorithm Execution Time Schedule Algorithm Schedule Strategy Grid Environment 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Blaha, P., Schwarz, K., Madsen, G., Kvasnicka, D., Luitz, J.: WIEN2k: An Augmented Plane Wave plus Local Orbitals Program for Calculating Crystal Properties. Institute of Physical and Theoretical Chemistry, Vienna University of Technology (2001)Google Scholar
  2. 2.
    The Austrian Grid Consortium,
  3. 3.
    Deelman, E., Blythe, J., Gil, Y., Kesselman, C., Mehta, G., Patil, S., Su, M.-H., Vahi, K., Livny, M.: Pegasus: Mapping scientific workflows onto the grid. In: European Across Grids Conference, pp. 11–20 (2004)Google Scholar
  4. 4.
    Rutschmann, P., Theiner, D.: An inverse modelling approach for the estimation of hydrological model parameters. Journal of Hydroinformatics (2005)Google Scholar
  5. 5.
    Duan, R., Fahringer, T., Prodan, R., Qin, J., Villazon, A., Wieczorek, M.: Real World Workflow Applications in the Askalon Grid Environment. In: Sloot, P.M.A., Hoekstra, A.G., Priol, T., Reinefeld, A., Bubak, M. (eds.) EGC 2005. LNCS, vol. 3470, Springer, Heidelberg (2005)CrossRefGoogle Scholar
  6. 6.
  7. 7.
    Nabrzyski, J., Schopf, J.M., Weglarz, J.: Grid Resource Management, State of the Art and Future Trends, pp. 99–116. Kluwer, Dordrecht (2003)zbMATHGoogle Scholar
  8. 8.
    Prodan, R., Fahringer, T.: Dynamic Scheduling of Scientific Workflow Applications on the Grid using a Modular Optimisation Tool: A Case Study. In: 20th Symposion of Applied Computing (SAC 2005), Santa Fe, New Mexico, USA, March 2005, ACM Press, New York (2005)Google Scholar
  9. 9.
    Sakellariou, R., Zhao, H.: A hybrid heuristic for dag scheduling on heterogeneous systems. In: IPDPS (2004)Google Scholar
  10. 10.
    The Condor Team. Dagman (directed acyclic graph manager),
  11. 11.
    Qin, J., Fahringer, T., Hainzer, S.: Specification of Grid Workflow Applications with AGWL: An Abstract Grid Workflow Language. In: Proceedings of IEEE International Symposium on Cluster Computing and the Grid 2005 (CCGrid 2005), Cardiff, UK, May 9-12, 2005, IEEE Computer Society Press, Los Alamitos (2005)Google Scholar
  12. 12.
    Zhao, H., Sakellariou, R.: An experimental investigation into the rank function of the heterogeneous earliest finish time scheduling algorithm. In: Kosch, H., Böszörményi, L., Hellwagner, H. (eds.) Euro-Par 2003. LNCS, vol. 2790, pp. 189–194. Springer, Heidelberg (2003)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Marek Wieczorek
    • 1
  • Radu Prodan
    • 1
  • Thomas Fahringer
    • 1
  1. 1.Institute of Computer ScienceUniversity of InnsbruckInnsbruckAustria

Personalised recommendations