FPGA Implementation of the Conjugate Gradient Method

  • Oleg Maslennikow
  • Volodymyr Lepekha
  • Anatoli Sergyienko
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3911)

Abstract

The rational fraction number system is proposed to solve the algebraic problems in FPGA devices. The fraction number consists of the n-bit integer numerator and the n -bit integer denominator, and can represent numbers with 2n bit mantissa. Experimental linear equation system solver was developed in FPGA device, which implements the recursive conjugate gradient method. Its hardware arithmetic unit can calculate addition, multiplication, and division of fraction numbers with n=35 in a pipelined mode. The proposed unit operates with the band matrices with the dimensions up to 3500.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Underwood, K.D., Hemmert, K.S.: Closing the Gap: CPU and FPGA Trends in sustained Floating Point BLAS Performance. In: Proc. IEEE Symp. Field Programmable Custom Computing Machines, FCCM-2004 (2004)Google Scholar
  2. 2.
    Dou, Y., Vassiliadis, S., Kuzmanov, G.K., Gaydadjiev, G.N.: 64-bit Floating point FPGA Matrix Multiplication. In: ACM/SIGDA 13-th Int. Symp. on Field Programmable Gate Arrays, FPGA-2005, February 2005, pp. 86–95 (2005)Google Scholar
  3. 3.
    Sergyienko, A., Maslennikow, O.: Implementation of Givens QR Decomposition in FPGA. In: Wyrzykowski, R., Dongarra, J., Paprzycki, M., Waśniewski, J. (eds.) PPAM 2001. LNCS, vol. 2328, pp. 453–459. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  4. 4.
    Golub, G.G., Van Loan, C.F.: Matrix Computations, 2nd edn., p. 642. J. Hopkins Univ. Press (1989)Google Scholar
  5. 5.
    Maslennikow, O., Shevtshenko, J., Sergyienko, A.: Configurable Microprocessor Array for DSP applications. In: Wyrzykowski, R., Dongarra, J., Paprzycki, M., Waśniewski, J. (eds.) PPAM 2004. LNCS, vol. 3019, pp. 36–41. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  6. 6.
    Hintchin, A.Y.: Chained Fractions (in Russian).: 3d edn., p. 112. Nauka, Moscow (1978)Google Scholar
  7. 7.
    Irvin, M.J., Smith, D.R.: A rational arithmetic processor. In: Proc. 5-th Symp. Comput. Arithmetic, pp. 241–244 (1981)Google Scholar
  8. 8.
    Holmes, W.N.: Composite Arithmetic: Proposal for a new Standard. Computer N3, 65–72 (March 1997)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Oleg Maslennikow
    • 1
  • Volodymyr Lepekha
    • 2
  • Anatoli Sergyienko
    • 2
  1. 1.Technical University of KoszalinKoszalinPoland
  2. 2.National Technical University of UkraineKievUkraine

Personalised recommendations