Advertisement

A Generic Construction of Secure Signatures Without Random Oracles

  • Jin Li
  • Yuen-Yan Chan
  • Yanming Wang
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3982)

Abstract

We show how to construct an existentially unforgeable secure signature scheme from any scheme satisfies only a weak notion of security in the standard model. This construction method combines a weakly secure signature and a one-time signature. However, key generation of the resulted fully secure signature is the same as the key generation of weak signature. Therefore the length of the public key in our fully secure signature is independent of that of the one-time signature. Our conversion from a weakly secure signature scheme to an existentially unforgeable secure signature scheme is simple, efficient and provably secure in the standard model (that is, security of the resulting scheme does not rely on the random oracle model). Our results yield a new construction of existentially unforgeable secure signature in the standard model. Furthermore, we show two efficient instantiations without random oracles converted from two previous weakly secure signature schemes.

Keywords

Signature Standard Model Weak Chosen Message Attack 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    An, J.H., Dodis, Y., Rabin, T.: On the security of joint signature and encryption. In: Knudsen, L.R. (ed.) EUROCRYPT 2002. LNCS, vol. 2332, p. 83. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  2. 2.
    Bellare, M., Micali, S.: How to sign given any trapdoor function. J. of the ACM 39, 214–233 (1992)zbMATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Bellare, M., Rogaway, P.: Random oracle are practical: A paradigm for designing efficient protocols. In: Proceedings of the First ACM Conference on Computer and Communications Security, pp. 62–73 (1993)Google Scholar
  4. 4.
    Bellare, M., Rogaway, P.: The exact security of digital signatures - how to sign with RSA and rabin. In: Maurer, U.M. (ed.) EUROCRYPT 1996. LNCS, vol. 1070, pp. 399–416. Springer, Heidelberg (1996)Google Scholar
  5. 5.
    Boneh, D., Boyen, X.: Short signatures without random oracles. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol. 3027, pp. 56–73. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  6. 6.
    Boneh, D., Boyen, X., Shacham, H.: Short group signatures. In: Franklin, M. (ed.) CRYPTO 2004. LNCS, vol. 3152, pp. 41–55. Springer, Heidelberg (2004)Google Scholar
  7. 7.
    Boneh, D., Lynn, B., Shacham, H.: Short signatures from the weil pairing. In: Boyd, C. (ed.) ASIACRYPT 2001. LNCS, vol. 2248, pp. 514–532. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  8. 8.
    Canetti, R., Goldreich, O., Halevi, S.: The Random Oracle Methodology, Revis- ited. In: STOC 1998, pp. 207–221. ACM, New York (1998)Google Scholar
  9. 9.
    Coron, J.-S., Naccache, D.: Security analysis of the gennaro-halevi-rabin signature scheme. In: Preneel, B. (ed.) EUROCRYPT 2000. LNCS, vol. 1807, pp. 91–101. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  10. 10.
    Coron, J.-S.: On the exact security of full domain hash. In: Bellare, M. (ed.) CRYPTO 2000. LNCS, vol. 1880, pp. 22–35. Springer, Heidelberg (2000)Google Scholar
  11. 11.
    Cramer, R., Shoup, V.: Signature schemes based on the strong RSA assumption. ACM TISSEC 3(3), 161–185 (2000); Extended abstract in Proc. 6th ACM CCS 1999 (1999)CrossRefGoogle Scholar
  12. 12.
    Dwork, C., Naor, M.: An efficient existentially unforgeable signature scheme and its applications. J. of Cryptology 11(3), 187–208 (1998)zbMATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    Elgamal, T.: A public key cryptosystem and a signature scheme based on discret logarithms. IEEE Trans. Info. Theory IT-31(4), 469–472 (1985)zbMATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    Even, S., Goldreich, O., Micali, S.: On-line/Off-line digital signatures. Journal of Cryptology 9, 35–67 (1996)zbMATHCrossRefMathSciNetGoogle Scholar
  15. 15.
    Fiat, A., Shamir, A.: How to prove yourself. In: Odlyzko, A.M. (ed.) CRYPTO 1986. LNCS, vol. 263, pp. 186–194. Springer, Heidelberg (1987)Google Scholar
  16. 16.
    Gennaro, R., Halevi, S., Rabin, T.: Secure hash-and-sign signatures without the random oracle. In: Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, pp. 123–139. Springer, Heidelberg (1999)Google Scholar
  17. 17.
    Goldwasser, S., Micali, S., Rivest, R.: A digital signature scheme secure against adaptive chosen-message attacks. SIAM J. Computing 17(2), 281–308 (1988)zbMATHCrossRefMathSciNetGoogle Scholar
  18. 18.
    Krawczyk, H., Rabin, T.: Chameleon signatures. In: Proceedings of NDSS 2000. Internet Society (2000), http://eprint.iacr.org/1998/010/
  19. 19.
    Lamport, L.: Constructing digital signatures from a one way function. Technical Report CSL-98, SRI International (October 1979)Google Scholar
  20. 20.
    Perrig, A.: The BiBa one-time signature and broadcast authentication protocol. In: Eighth ACM Conference on Computer and Communication Security, pp. 28–37. ACM, New York (2001)CrossRefGoogle Scholar
  21. 21.
    Pointcheval, D., Stern, J.: Security arguments for digital signatures and blind signatures. Journal of Cryptology 13(3), 361–396 (2000)zbMATHCrossRefGoogle Scholar
  22. 22.
    Rivest, R., Shamir, A., Adleman, L.: A method for obtaining digital signature and pulbic key cryptosystems. Comm. of ACM 21, 120–126 (1978)zbMATHCrossRefMathSciNetGoogle Scholar
  23. 23.
    Zhang, F., Safavi-Naini, R., Susilo, W.: An efficient signature scheme from bilinear pairings and its applications. In: Bao, F., Deng, R., Zhou, J. (eds.) PKC 2004. LNCS, vol. 2947, pp. 277–290. Springer, Heidelberg (2004)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Jin Li
    • 1
  • Yuen-Yan Chan
    • 2
  • Yanming Wang
    • 1
    • 3
  1. 1.School of Mathematics and Computational ScienceSun Yat-Sen UniversityGuangzhouP.R. China
  2. 2.Department of Information EngineeringChinese University of Hong KongShatin, N.T., Hong Kong
  3. 3.Lingnan CollegeSun Yat-Sen UniversityGuangzhouP.R. China

Personalised recommendations