Systematic Sampling in Image-Synthesis

  • Mateu Sbert
  • Jaume Rigau
  • Miquel Feixas
  • Laszlo Neumann
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3980)


In this paper we investigate systematic sampling in the image- synthesis context. Systematic sampling has been widely used in stereology to improve the efficiency of different probes in experimental design. These designs are theoretically based on estimators of 1-dimensional and 2-dimensional integrals. For the particular case of the characteristic function, the variance of these estimators has been shown to be asymptotically N  − − 3/2, which improves on the O(N  − − 1) behaviour of independent estimators using uniform sampling. Thus, when no a priori knowledge of the integrand function is available, like in several image synthesis techniques, systematic sampling efficiently reduces the computational cost.


Mean Square Error Computer Graphic Systematic Sampling Regular Sampling Global Illumination 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Baddeley, A., Vedel Jensen, E.B.: Stereology for Statisticians. Chapman & Hall/CRC (2005)Google Scholar
  2. 2.
    Barabesi, L.: A Monte Carlo integration approach to Horvitz-Thompson estimation in replicated environment designs. METRON – International Journal of Statistics, LXI(3), 355–374 (2003)Google Scholar
  3. 3.
    Cruz-Orive, L.M.: On the precision of systematic sampling: a review of Matheron’s transitive methods. Journal of Microscopy 153(Pt3), 315–333 (1989)Google Scholar
  4. 4.
    Cruz-Orive, L.M.: Systematic sampling in stereology. In: Proceedings 49th Session Bull. Intern. Statis. Instit., Florence, vol. 55, pp. 451–468 (1993)Google Scholar
  5. 5.
    Purgathofer, W.: A statistical method for adaptive stochastic sampling. Computers & Graphics 11(2), 157–162 (1987)CrossRefGoogle Scholar
  6. 6.
    Sobol, I.M.: Monte Carlo numerical methods. Science, Moscou (1973) (in Russian)Google Scholar
  7. 7.
    Keller, A., Heidrich, W.: Interleaved Sampling. In: Eurographics Workshop on Rendering 2001 (2001)Google Scholar
  8. 8.
    Kollig, T., Keller, A.: Efficient Multidimensional Sampling. Computer Graphics Forum 21(3), 557–563 (2002)CrossRefGoogle Scholar
  9. 9.
    Krishnaiah, P.R., Rao, C.R.: Handbook of statistics, vol. 6. Elsevier, Amsterdam (1988)Google Scholar
  10. 10.
    Cochran, W.G.: Sampling Techniques. John Wiley and sons, New York (1997)Google Scholar
  11. 11.
    Iones, A., Krupkin, A., Sbert, M., Zhukov, S.: Fast realistic lighting for video games. IEEE Computer Graphics & Applications (2003)Google Scholar
  12. 12.
    Mendez, A., Sbert, M.: Comparing Hemisphere Sampling Techniques for Obscurance Computation. In: 3IA 2004, Limoges, France (2004)Google Scholar
  13. 13.
    Sbert, M.: The Use of Global Random Directions to Compute Radiosity. Global Monte Carlo Techniques, PhD dissertation, Universitat Politècnica de Catalunya (1997)Google Scholar
  14. 14.
    Szirmay-Kalos, L.: Photorealistic Image Synthesis Using Ray-bundles, D.Sc. dissertation, Hungarian Academy of Sciences (2000)Google Scholar
  15. 15.
    Gual–Arnau, X., Cruz-Orive, L.M.: Systematic sampling on the circle and the sphere. Advances in Applied Probability (SGSA) 32, 628–647 (2000)zbMATHCrossRefMathSciNetGoogle Scholar
  16. 16.
    Stoyan, D., Kendall, W.S., Mecke, J.: Stochastic Geometry and its Applications. Wiley, Chichester (1987)zbMATHGoogle Scholar
  17. 17.
    Purgathofer, W., Tobler, R.F., Geiler, M.: Forced Random Dithering: Improved Threshold Matrices for Ordered Dithering. In: Proceedings of the First IEEE International Conference on Image Processing, Austin, Texas (1994)Google Scholar
  18. 18.
    Purgathofer, W., Tobler, R.F., Geiler, M.: Improved Threshold Matrices for Ordered Dithering. In: Graphics Gems V. Academic Press, London (1995)Google Scholar
  19. 19.
    Shirley, P.: Discrepancy as a Quality Measure for Sample Distributions. In: Proceedings of Eurographics 1991 (1991)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Mateu Sbert
    • 1
  • Jaume Rigau
    • 1
  • Miquel Feixas
    • 1
  • Laszlo Neumann
    • 1
  1. 1.Institut d’Informatica i AplicacionsUniversitat de GironaSpain

Personalised recommendations