The General Purpose Analog Computer and Computable Analysis are Two Equivalent Paradigms of Analog Computation

  • Olivier Bournez
  • Manuel L. Campagnolo
  • Daniel S. Graça
  • Emmanuel Hainry
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3959)

Abstract

In this paper we revisit one of the first models of analog computation, Shannon’s General Purpose Analog Computer (GPAC). The GPAC has often been argued to be weaker than computable analysis. As main contribution, we show that if we change the notion of GPAC-computability in a natural way, we compute exactly all real computable functions (in the sense of computable analysis). Moreover, since GPACs are equivalent to systems of polynomial differential equations then we show that all real computable functions can be defined by such models.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Arnold, V.I.: Ordinary Differential Equations. MIT Press, Cambridge (1978)Google Scholar
  2. Blum, L., Shub, M., Smale, S.: On a theory of computation and complexity over the real numbers: NP-completeness, recursive functions and universal machines. Bull. Amer. Math. Soc. 21(1), 1–46 (1989)MATHCrossRefMathSciNetGoogle Scholar
  3. Bournez, O., Hainry, E.: Recursive analysis characterized as a class of real recursive functions. To appear in Fund. InformGoogle Scholar
  4. Branicky, M.S.: Universal computation and other capabilities of hybrid and continuous dynamical systems. Theoret. Comput. Sci. 138(1), 67–100 (1995)MATHCrossRefMathSciNetGoogle Scholar
  5. Bush, V.: The differential analyzer. A new machine for solving differential equations. J. Franklin Inst. 212, 447–488 (1931)MATHCrossRefGoogle Scholar
  6. Campagnolo, M.L.: Computational Complexity of Real Valued Recursive Functions and Analog Circuits. PhD thesis, IST/UTL (2002)Google Scholar
  7. Campagnolo, M.L., Moore, C., Costa, J.F.: Iteration, inequalities, and differentiability in analog computers. J. Complexity 16(4), 642–660 (2000)MATHCrossRefMathSciNetGoogle Scholar
  8. Graça, D.S.: Some recent developments on Shannon’s General Purpose Analog Computer. Math. Log. Quart. 50(4-5), 473–485 (2004)MATHCrossRefGoogle Scholar
  9. Graça, D.S., Campagnolo, M.L., Buescu, J.: Robust simulations of Turing machines with analytic maps and flows. In: Cooper, S.B., Löwe, B., Torenvliet, L. (eds.) CiE 2005. LNCS, vol. 3526, pp. 169–179. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  10. Graça, D.S., Costa, J.F.: Analog computers and recursive functions over the reals. J. Complexity 19(5), 644–664 (2003)MATHCrossRefMathSciNetGoogle Scholar
  11. Grzegorczyk, A.: On the definitions of computable real continuous functions. Fund. Math. 44, 61–71 (1957)MATHMathSciNetGoogle Scholar
  12. Ko, K.-I.: Computational Complexity of Real Functions, Birkhäuser (1991)Google Scholar
  13. Koiran, P., Moore, C.: Closed-form analytic maps in one and two dimensions can simulate universal Turing machines. Theoret. Comput. Sci. 210(1), 217–223 (1999)MATHCrossRefMathSciNetGoogle Scholar
  14. Lacombe, D.: Extension de la notion de fonction récursive aux fonctions d’une ou plusieurs variables réelles III. Comptes Rendus de l’Académie des Sciences Paris 241, 151–153 (1955)Google Scholar
  15. Lipshitz, L., Rubel, L.A.: A differentially algebraic replacement theorem, and analog computability. Proc. Amer. Math. Soc. 99(2), 367–372 (1987)MATHCrossRefMathSciNetGoogle Scholar
  16. Moore, C.: Recursion theory on the reals and continuous-time computation. Theoret. Comput. Sci. 162, 23–44 (1996)MATHCrossRefMathSciNetGoogle Scholar
  17. Mycka, J., Costa, J.F.: Real recursive functions and their hierarchy. J. Complexity 20(6), 835–857 (2004)MATHCrossRefMathSciNetGoogle Scholar
  18. Pour-El, M.B.: Abstract computability and its relations to the general purpose analog computer. Trans. Amer. Math. Soc. 199, 1–28 (1974)MATHCrossRefMathSciNetGoogle Scholar
  19. Pour-El, M.B., Richards, J.I.: Computability in Analysis and Physics. Springer, Heidelberg (1989)MATHGoogle Scholar
  20. Rubel, L.A.: A survey of transcendentally transcendental functions. Amer. Math. Monthly 96(9), 777–788 (1989)MATHCrossRefMathSciNetGoogle Scholar
  21. Shannon, C.E.: Mathematical theory of the differential analyzer. J. Math. Phys. MIT 20, 337–354 (1941)MATHMathSciNetGoogle Scholar
  22. Siegelmann, H.T.: Neural Networks and Analog Computation: Beyond the Turing Limit, Birkhäuser (1999)Google Scholar
  23. Turing, A.M.: On computable numbers, with an application to the Entscheidungsproblem. Proc. London Math. Soc. 2(42), 230–265 (1936)Google Scholar
  24. Weihrauch, K.: Computable Analysis: an Introduction. Springer, Heidelberg (2000)MATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Olivier Bournez
    • 1
    • 6
  • Manuel L. Campagnolo
    • 2
    • 4
  • Daniel S. Graça
    • 3
    • 4
  • Emmanuel Hainry
    • 5
    • 6
  1. 1.INRIA Lorraine 
  2. 2.DM/ISAUniversidade Técnica de LisboaLisboaPortugal
  3. 3.DM/FCTUniversidade do Algarve, C. GambelasFaroPortugal
  4. 4.CLC, DM/ISTUniversidade Técnica de LisboaLisboaPortugal
  5. 5.Institut National Polytechnique de Lorraine 
  6. 6.Vandœuvre-Lès-NancyLORIA (UMR 7503 CNRS-INPL-INRIA-Nancy2-UHP), Campus scientifiqueFrance

Personalised recommendations