Lightweight Causal Cluster Consistency

  • Anders Gidenstam
  • Boris Koldehofe
  • Marina Papatriantafilou
  • Philippas Tsigas
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3908)


Within an effort for providing a layered architecture of services supporting multi-peer collaborative applications, this paper proposes a new type of consistency management aimed for applications where a large number of processes share a large set of replicated objects. Many such applications, like peer-to-peer collaborative environments for training or entertaining purposes, platforms for distributed monitoring and tuning of networks, rely on a fast propagation of updates on objects, however they also require a notion of consistent state update. To cope with these requirements and also ensure scalability, we propose the cluster consistency model. We also propose a two-layered architecture for providing cluster consistency. This is a general architecture that can be applied on top of the standard Internet communication layers and offers a modular, layered set of services to the applications that need them. Further, we present a fault-tolerant protocol implementing causal cluster consistency with predictable reliability, running on top of decentralised probabilistic protocols supporting group communication. Our experimental study, conducted by implementing and evaluating the two-layered architecture on top of standard Internet transport services, shows that the approach scales well, imposes an even load on the system, and provides high-probability reliability guarantees.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Miller, D.C., Thorpe, J.A.: SIMNET:the advent of simulator networking. Proc. of the IEEE 83(8), 1114–1123 (1995)CrossRefGoogle Scholar
  2. 2.
    Greenhalgh, C., Benford, S.: A multicast network architecture for large scale collaborative virtual environments. In: Morganti, M., Fdida, S. (eds.) ECMAST 1997, vol. 1242, pp. 113–128. Springer, Heidelberg (1997)CrossRefGoogle Scholar
  3. 3.
    Carlsson, C., Hagsand, O.: DIVE - a multi-user virtual reality system. In: Proc. of the IEEE Annual Int. Symp., pp. 394–400 (1993)Google Scholar
  4. 4.
    Lamport, L.: Time, clocks, and the ordering of events in a distributed system. Communications of the ACM 7(21), 558–565 (1978)Google Scholar
  5. 5.
    Birman, K.P., Joseph, T.A.: Reliable communication in the presence of failure. ACM Transactions on Computer Systems 5, 47–76 (1987)CrossRefGoogle Scholar
  6. 6.
    Birman, K., Schiper, A., Stephenson, P.: Lightweight causal and atomic group multicast. ACM Transactions on Computer Systems 9, 272–314 (1991)CrossRefGoogle Scholar
  7. 7.
    Raynal, M., Schiper, A., Toueg, S.: The causal ordering abstraction and a simple way to implement it. Information Processing Letters 39, 343–350 (1991)MathSciNetCrossRefMATHGoogle Scholar
  8. 8.
    Kshemkalyani, A.D., Singhal, M.: Necessary and sufficient conditions on information for causal message ordering and their optimal implementation. Distributed Computing 11, 91–111 (1998)CrossRefGoogle Scholar
  9. 9.
    Baldoni, R., Prakash, R., Raynal, M., Singhal, M.: Efficient Δ-causal broadcasting. Int. Journal of Computer Systems Science and Engineering 13, 263–269 (1998)MATHGoogle Scholar
  10. 10.
    Rodrigues, L., Baldoni, R., Anceaume, E., Raynal, M.: Deadline-constrained causal order. In: Proc. of the 3rd IEEE Int. Symp. on Object-oriented Real-time distributed Computing (2000)Google Scholar
  11. 11.
    Mattern, F.: Virtual time and global states of distributed systems. In: Proc. Of the Int. Workshop on Parallel and Distributed Algorithms, pp. 215–226 (1989)Google Scholar
  12. 12.
    Birman, K.P., Hayden, M., Ozkasap, O., Xiao, Z., Budiu, M., Minsky, Y.: Bimodal multicast. ACM Transactions on Computer Systems 17, 41–88 (1999)CrossRefGoogle Scholar
  13. 13.
    Eugster, P.T., Guerraoui, R., Handurukande, S.B., Kermarrec, A.M., Kouznetsov, P.: Lightweight probabilistic broadcast. In: Proc. of the Int. Conf. on Dependable Systems and Networks, pp. 443–452 (2001)Google Scholar
  14. 14.
    Ganesh, A.J., Kermarrec, A.M., Massoulié, L.: Scamp: Peer-to-peer lightweight membership service for large-scale group communication. In: Crowcroft, J., Hofmann, M. (eds.) NGC 2001. LNCS, vol. 2233, pp. 44–55. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  15. 15.
    Koldehofe, B.: Buffer management in probabilistic peer-to-peer communication protocols. In: Proc. of the 22nd Symp. on Reliable Distributed Systems, pp. 76–85. IEEE, Los Alamitos (2003)Google Scholar
  16. 16.
    Pereira, J., Rodrigues, L., Monteiro, M., Kermarrec, A.M.: NEEM: Networkfriendly epidemic multicast. In: Proc. of the 22nd Symp. on Reliable Distributed Systems, pp. 15–24. IEEE, Los Alamitos (2003)Google Scholar
  17. 17.
    Baehni, S., Eugster, P.T., Guerraoui, R.: Data-aware multicast. In: Proc. of the 5th IEEE Int. Conf. on Dependable Systems and Networks, pp. 233–242 (2004)Google Scholar
  18. 18.
    Stoica, I., Morris, R., Karger, D., Kaashoek, F., Balakrishnan, H.: Chord: A scalable Peer-To-Peer lookup service for internet applications. In: Proc. of the ACM SIGCOMM 2001 Conf., pp. 149–160. ACM Press, New York (2001)Google Scholar
  19. 19.
    Alima, L.O., Ghodsi, A., Brand, P., Haridi, S.: Multicast in DKS(N; k; f) overlay networks. In: Papatriantafilou, M., Hunel, P. (eds.) OPODIS 2003. LNCS, vol. 3144, pp. 83–95. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  20. 20.
    Ratnasamy, S., Francis, P., Handley, M., Karp, R., Shenker, S.: A scalable contentaddressable network. ACM SIGCOMM Computer Communication Review 31, 161–172 (2001)CrossRefGoogle Scholar
  21. 21.
    Rowstron, A., Druschel, P.: Pastry: Scalable, decentralized object location, and routing for large-scale peer-to-peer systems. In: Guerraoui, R. (ed.) Middleware 2001. LNCS, vol. 2218, p. 329. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  22. 22.
    Zhao, B.Y., Huang, L., Stribling, J., Rhea, S.C., Joseph, A.D.: Tapestry: A resilient global-scale overlay for service deployment. IEEE Journal on Selected Areas in Communications 22, 41–53 (2004)CrossRefGoogle Scholar
  23. 23.
    Lynch, N.A., Malkhi, D., Ratajczak, D.: Atomic data access in distributed hash tables. In: Druschel, P., Kaashoek, M.F., Rowstron, A. (eds.) IPTPS 2002. LNCS, vol. 2429, pp. 295–305. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  24. 24.
    Ahamad, M., Neiger, G., Kohli, P., Burns, J.E., Hutto, P.W.: Casual memory: Definitions, implementation and programming. Distributed Computing 9, 37–49 (1995)MathSciNetCrossRefGoogle Scholar
  25. 25.
    Gidenstam, A., Koldehofe, B., Papatriantafilou, M., Tsigas, P.: Dynamic and faulttolerant cluster management. In: Proc. of the 5th IEEE Int. Conf. on Peer-to-Peer Computing. IEEE, Los Alamitos (2005)Google Scholar
  26. 26.
    Motwani, R., Raghavan, P.: Randomized Algorithms. Cambridge University Press, Cambridge (1995)CrossRefMATHGoogle Scholar
  27. 27.
    Gidenstam, A., Koldehofe, B., Papatriantafilou, M., Tsigas, P.: Lightweight causal cluster consistency. Technical Report 2005-09, Computer Science and Engineering, Chalmers University of Technology (2005)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Anders Gidenstam
    • 1
  • Boris Koldehofe
    • 2
  • Marina Papatriantafilou
    • 1
  • Philippas Tsigas
    • 1
  1. 1.Department of Computer Science and EngineeringChalmers University of TechnologySweden
  2. 2.School of Computer and Communication Science, EPFLSwitzerland

Personalised recommendations