Parallel Key-Insulated Public Key Encryption

  • Goichiro Hanaoka
  • Yumiko Hanaoka
  • Hideki Imai
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3958)

Abstract

Security is constantly been infringed by inadvertent loss of secret keys, and as a solution, Dodis, Katz, Xu, and Yung [11], in Eurocrypt 2002, proposed a new paradigm called key-insulated security which provides tolerance against key exposures. Their scheme introduces a “helper key” which is used to periodically update the decryption key. The most attractive part of this scheme is that even if a decryption key of a time period is exposed, the security of the rest of the periods are unaffected. But how does this helper key managed? Can it be done efficiently? As, to alleviate the damage caused by key exposures, decryption key has to be updated at very short intervals, although frequent updating will, in contrary, increase the risk of helper key exposure. In this paper, we propose parallel key-insulated public key encryption in which two distinct helper keys alternately update a decryption key. The helper key of one system is independent from the other. Not only does it decrease the chance of helper key exposures, it also allows frequent updating of the decryption key, and over all, increases the security of the system.

References

  1. 1.
    Anderson, R.: Two remarks on public key cryptology. In: Invited Lecture, ACM CCCS 1997, available at http://www.cl.cam.ac.uk/users/rja14/
  2. 2.
    Abdalla, M., Reyzin, L.: A new forward-secure digital signature scheme. In: Okamoto, T. (ed.) ASIACRYPT 2000. LNCS, vol. 1976, pp. 116–129. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  3. 3.
    Boneh, D., Boyen, X.: Efficient selective-ID secure identity-based encryption without random oracles. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol. 3027, pp. 223–238. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  4. 4.
    Boneh, D., Boyen, X.: Secure identity based encryption without random oracles. In: Franklin, M. (ed.) CRYPTO 2004. LNCS, vol. 3152, pp. 443–459. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  5. 5.
    Boneh, D., Franklin, M.: Identity-based encryption from the Weil pairing. In: Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 213–229. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  6. 6.
    Boneh, D., Franklin, M.: Identity-based encryption from the Weil pairing. SIAM J. of Computing 32(3), 586–615 (2003) (full version of [5])MathSciNetCrossRefMATHGoogle Scholar
  7. 7.
    Bellare, M., Palacio, A.: Protecting against key exposure: strongly key-insulated encryption with optimal threshold, available at http://eprint.iacr.org/2002/064/
  8. 8.
    Bellare, M., Miner, S.K.: A forward-secure digital signature scheme. In: Wiener, M. (ed.) CRYPTO 1999. LNCS, vol. 1666, pp. 431–448. Springer, Heidelberg (1999)Google Scholar
  9. 9.
    Cocks, C.: An identity based encryption scheme based on quadratic residues. In: Honary, B. (ed.) Cryptography and Coding 2001. LNCS, vol. 2260, pp. 360–363. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  10. 10.
    Canetti, R., Halevi, S., Katz, J.: A forward secure public key encryption scheme. In: Biham, E. (ed.) EUROCRYPT 2003. LNCS, vol. 2656, pp. 255–271. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  11. 11.
    Dodis, Y., Katz, J., Xu, S., Yung, M.: Key-insulated public key cryptosystems. In: Knudsen, L.R. (ed.) EUROCRYPT 2002. LNCS, vol. 2332, pp. 65–82. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  12. 12.
    Dodis, Y., Katz, J., Xu, S., Yung, M.: Strong key-insulated signature schemes. In: Desmedt, Y.G. (ed.) PKC 2003. LNCS, vol. 2567, pp. 130–144. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  13. 13.
    Dodis, Y., Franklin, M., Katz, J., Miyaji, A., Yung, M.: Intrusion-resilient publickey encryption. In: Joye, M. (ed.) CT-RSA 2003. LNCS, vol. 2612, pp. 19–32. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  14. 14.
    Dodis, Y., Franklin, M., Katz, J., Miyaji, A., Yung, M.: A generic construction for intrusion-resilient public-key encryption. In: Okamoto, T. (ed.) CT-RSA 2004. LNCS, vol. 2964, pp. 81–98. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  15. 15.
    Fujisaki, E., Okamoto, T.: How to enhance the security of public-key encryption at minimum cost. In: Imai, H., Zheng, Y. (eds.) PKC 1999. LNCS, vol. 1560, pp. 53–68. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  16. 16.
    Fujisaki, E., Okamoto, T.: Secure integration of asymmetric and symmetric encryption schemes. In: Wiener, M. (ed.) CRYPTO 1999. LNCS, vol. 1666, pp. 537–554. Springer, Heidelberg (1999)Google Scholar
  17. 17.
    Itkis, G., Reyzin, L.: SiBIR: signer-base intrusion-resilient signatures. In: Yung, M. (ed.) CRYPTO 2002. LNCS, vol. 2442, pp. 499–514. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  18. 18.
    Shamir, A.: Identity-based cryptosystems and signature schemes. In: Blakely, G.R., Chaum, D. (eds.) CRYPTO 1984. LNCS, vol. 196, pp. 47–53. Springer, Heidelberg (1985)CrossRefGoogle Scholar
  19. 19.
    Waters, B.: Efficient identity-based encryption without random oracles. In: Cramer, R. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 114–127. Springer, Heidelberg (2005)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Goichiro Hanaoka
    • 1
  • Yumiko Hanaoka
    • 2
  • Hideki Imai
    • 1
    • 3
  1. 1.Research Center for Information SecurityNational Institute of Advanced Industrial Science and TechnologyTokyoJapan
  2. 2.NTT DoCoMo, Inc.YokosukaJapan
  3. 3.Institute of Industrial ScienceUniversity of TokyoTokyoJapan

Personalised recommendations