Linear Integer Secret Sharing and Distributed Exponentiation

  • Ivan Damgård
  • Rune Thorbek
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3958)


We introduce the notion of Linear Integer Secret-Sharing (LISS) schemes, and show constructions of such schemes for any access structure. We show that any LISS scheme can be used to build a secure distributed protocol for exponentiation in any group. This implies, for instance, distributed RSA protocols for arbitrary access structures and with arbitrary public exponents.


  1. 1.
    Benaloh, J.C., Leichter, J.: Generalized Secret Sharing and Monotone Functions. In: Goldwasser, S. (ed.) CRYPTO 1988. LNCS, vol. 403, pp. 27–35. Springer, Heidelberg (1988)Google Scholar
  2. 2.
    Boppana, R.B.: Amplification of Probabilistic Boolean Formulas. Advances in Computing Research 5, 27–45 (1989)Google Scholar
  3. 3.
    Radhakrishnan, J.: Better Lower Bounds for Monotone Threshold Formulas. J. Comput. Syst. Sci. 54(2), 221–226 (1997)MathSciNetCrossRefMATHGoogle Scholar
  4. 4.
    Canetti, R.: Universally Composable Security: A New Paradigm for Cryptographic Protocols. In: FOCS 2001, pp. 136–145 (2001)Google Scholar
  5. 5.
    Chor, B., Kushilevitz, E.: Secret Sharing Over Infinite Domains. J. Cryptology 6(2), 87–95 (1993)MathSciNetCrossRefMATHGoogle Scholar
  6. 6.
    Chor, B., Geréb-Graus, M., Kushilevitz, E.: Private Computations over the Integers. SIAM J. Comput. 24(2), 376–386 (1995)MathSciNetCrossRefMATHGoogle Scholar
  7. 7.
    Cramer, R., Damgård, I.B.: Secret-Key Zero-Knowlegde and Non-interactive Verifiable Exponentiation. In: Naor, M. (ed.) TCC 2004. LNCS, vol. 2951, pp. 223–237. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  8. 8.
    Cramer, R., Fehr, S.: Optimal Black-Box Secret Sharing over Arbitrary Abelian Groups. In: Yung, M. (ed.) CRYPTO 2002. LNCS, vol. 2442, pp. 272–287. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  9. 9.
    Cramer, R., Fehr, S., Stam, M.: Black-Box Secret Sharing from Primitve Sets in Algebraic Number Fields. In: Shoup, V. (ed.) CRYPTO 2005. LNCS, vol. 3621, pp. 344–360. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  10. 10.
    Damgård, I., Dupont, K.: Efficient threshold RSA signatures with general moduli and no extra assumptions. In: Vaudenay, S. (ed.) PKC 2005. LNCS, vol. 3386, pp. 346–361. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  11. 11.
    Damgård, I.B., Fazio, N., Nicolosi, A.: Non-Interactive Zero-Knowledge Proofs from Homomorphic Encryption. In: Halevi, S., Rabin, T. (eds.) TCC 2006. LNCS, vol. 3876, pp. 41–59. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  12. 12.
    Damgård, I.B., Koprowski, M.: Practical Threshold RSA Signatures without a Trusted Dealer. In: Pfitzmann, B. (ed.) EUROCRYPT 2001. LNCS, vol. 2045, pp. 152–165. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  13. 13.
    Desmedt, Y., Frankel, Y.: Perfect Homomorphic Zero-Knowledge Threshold Schemes over any Finite Abelian Group. SIAM J. Discrete Math. 7(4), 667–679 (1994)MathSciNetCrossRefMATHGoogle Scholar
  14. 14.
    Damgård, I., Thorbek, R.: Linear Integer Secret Sharing and Distributed Exponentiation (full version), the Eprint archive,
  15. 15.
    Frankel, Y., Gemmell, P., MacKenzie, P.D., Yung, M.: Optimal Resilience Proactive Public-Key Cryptosystems. In: FOCS 1997, pp. 384–393 (1997)Google Scholar
  16. 16.
    Gennaro, R., Rabin, T., Jarecki, S., Krawczyk, H.: Robust and Efficient Sharing of RSA Functions. J. Cryptology 13(2), 273–300 (2000)MathSciNetCrossRefMATHGoogle Scholar
  17. 17.
    Goldreich, O., Micali, S., Wigderson, A.: Proofs that Yield Nothing But Their Validity or All Languages in NP Have Zero-Knowledge Proof Systems. J. ACM 38(3), 691–729 (1991)MathSciNetCrossRefMATHGoogle Scholar
  18. 18.
    Rabin, T.: A Simplified Approach to Threshold and Proactive RSA. In: Krawczyk, H. (ed.) CRYPTO 1998. LNCS, vol. 1462, pp. 89–104. Springer, Heidelberg (1998)Google Scholar
  19. 19.
    Schnorr, C.-P.: Efficient Signature Generation by Smart Cards. J. Cryptology 4(3), 161–174 (1991)CrossRefMATHGoogle Scholar
  20. 20.
    Shamir, A.: How to Share a Secret. Commun. ACM 22(11), 612–613 (1979)MathSciNetCrossRefMATHGoogle Scholar
  21. 21.
    De Santis, A., Desmedt, Y., Frankel, Y., Yung, M.: How to share a function securely. In: STOC 1994, pp. 522–533 (1994)Google Scholar
  22. 22.
    Shoup, V.: Practical Threshold Signatures. In: Preneel, B. (ed.) EUROCRYPT 2000. LNCS, vol. 1807, pp. 207–220. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  23. 23.
    Valiant, L.G.: Short Monotone Formulae for the Majority Function. J. Algorithms 5(3), 363–366 (1984)MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Ivan Damgård
    • 1
  • Rune Thorbek
    • 1
  1. 1.BRICS, Dept. of Computer ScienceUniversity of AarhusDenmark

Personalised recommendations